Development of thermal fatigue testing apparatus with BWR water environment and thermal fatigue strength of austenitic stainless steels

被引:9
|
作者
Hayashi, M
Enomoto, K
Saito, T
Miyagawa, T
机构
[1] Hitachi Ltd, Mech Engn Res Lab, Tsuchiura, Ibaraki 300, Japan
[2] Hitachi Ltd, Hitachi Works, Hitachi, Ibaraki 317, Japan
[3] Tokyo Elect Power Co, Nucl Power Res & Dev Ctr, Tokyo, Japan
关键词
D O I
10.1016/S0029-5493(97)00364-6
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A thermal fatigue testing apparatus was developed in order to clarify the fatigue behavior in BWR environment. Pressurized high and low temperature pure water were alternately supplied into an autoclave with a small cylindrical specimen. Then a fatigue specimen was subjected to homogeneous thermal stress through the wall thickness. Fatigue crack initiation behavior was observed with the replication method and compared with the mechanical fatigue strength performed in air and high temperature water. The thermal fatigue strength of type 304 and 316 nuclear grade (316NG) stainless steels agreed closely with the mechanical fatigue strength, when transforming the nominal stress amplitude to the fictitious stress amplitude by using the mean value of strain amplitudes for room temperature and 288 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] Fatigue crack growth curve for austenitic stainless steels in BWR environment
    Itatani, M
    Asano, M
    Kikuchi, M
    Suzuki, S
    Iida, K
    [J]. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2001, 123 (02): : 166 - 172
  • [2] Thermal fatigue strength of type 304 stainless steel in simulated BWR environment
    Hayashi, M
    [J]. NUCLEAR ENGINEERING AND DESIGN, 1998, 184 (01) : 135 - 144
  • [3] Study of the high cycle thermal fatigue of austenitic stainless steels components in PWR water environment
    Le Duff, J. -A.
    Lefrancois, A.
    Vernot, J. -Ph.
    Martin, D.
    Calonne, O.
    [J]. REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2007, 104 (11): : 569 - 575
  • [4] Thermal fatigue crack growth in austenitic stainless steels
    Virkkunen, I
    Kemppainen, M
    Hänninen, H
    [J]. FATIGUE '99: PROCEEDINGS OF THE SEVENTH INTERNATIONAL FATIGUE CONGRESS, VOLS 1-4, 1999, : 2183 - 2188
  • [5] High cycle thermal fatigue of two austenitic stainless steels
    Vincent, Ludovic
    Rouesne, Elodie
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2024, 182
  • [6] RE-EVALUATION OF FATIGUE CRACK GROWTH CURVE FOR AUSTENITIC STAINLESS STEELS IN BWR ENVIRONMENT
    Itatani, Masao
    Ogawa, Takuya
    Narazaki, Chihiro
    Saito, Toshiyuki
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 1, 2012, : 631 - 636
  • [7] TECHNIQUES FOR FATIGUE TESTING AND EXTRAPOLATION OF FATIGUE LIFE FOR AUSTENITIC STAINLESS-STEELS
    MANJOINE, MJ
    LANDERMAN, EI
    [J]. JOURNAL OF TESTING AND EVALUATION, 1982, 10 (03) : 115 - 120
  • [8] High cycle thermal fatigue of austenitic stainless steel
    Wang, Yanjun
    Charbal, Ali
    Hild, Francois
    Vincent, Ludovic
    [J]. 12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018), 2018, 165
  • [9] EFFECTS OF PRIMARY WATER ENVIRONMENT ON THE THERMAL AGED CAST AUSTENITIC STAINLESS STEELS
    Fukuta, Yuichi
    Kanasaki, Hiroshi
    Yamane, Takahisa
    [J]. ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2015, VOL 1B, 2015,
  • [10] ULTRASONIC CORROSION FATIGUE BEHAVIOR OF HIGH STRENGTH AUSTENITIC STAINLESS STEELS
    Ebara, R.
    Yamaguchi, Y.
    Kanei, D.
    Yamamoto, Y.
    [J]. FATIGUE OF MATERIALS II: ADVANCES AND EMERGENCES IN UNDERSTANDING, 2013, : 233 - 242