A bootstrap-augmented alternating expectation-conditional maximization algorithm for mixtures of factor analyzers

被引:1
|
作者
Shreeves, Phillip [1 ]
Andrews, Jeffrey L. [1 ]
机构
[1] Univ British Columbia, Dept Stat, Okanagan Campus,1177 Res Rd, Kelowna, BC V1V 1V7, Canada
来源
STAT | 2019年 / 8卷 / 01期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
bootstrap; cluster analysis; EM algorithm; factor analysis; mixture models; FINITE MIXTURE; MAXIMUM-LIKELIHOOD; MODEL; MULTIVARIATE;
D O I
10.1002/sta4.243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Finite mixture models are a popular approach for unsupervised machine learning tasks. Mixtures of factor analyzers assume a latent variable structure, thereby modelling the data in a lower dimensional space. Herein, we augment the traditional alternating expectation-conditional maximization algorithm by incorporating the nonparametric bootstrap during the parameter estimation process. This augmentation is shown to improve discovery of both the true number of groups and the true latent dimensionality through simulations, while also showing superior clustering performance on benchmark data sets.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Modal identification of structures from input/output data using the expectation-maximization algorithm and uncertainty quantification by mean of the bootstrap
    Cara, Javier
    STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (01):
  • [32] An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-I
    COMPUTATIONAL STATISTICS, 2013, 28 (02) : 751 - 769
  • [33] An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    Computational Statistics, 2013, 28 : 751 - 769
  • [34] lclogit: A Stata command for fitting latent-class conditional logit models via the expectation-maximization algorithm
    Pacifico, Daniele
    Yoo, Hong Il
    STATA JOURNAL, 2013, 13 (03): : 625 - 639
  • [35] Developing Burr-XII NHPP-based software reliability growth model using Expectation Conditional Maximization Algorithm
    Han, Sheng
    Han, Qiang
    Qiao, Yixin
    Xue, Kehan
    Shi, Zhichao
    PROCEEDINGS OF THE 15TH ASIA-PACIFIC SYMPOSIUM ON INTERNETWARE, INTERNETWARE 2024, 2024, : 387 - 396
  • [37] Traits, traces and transposes: the Expectation Maximization (EM) algorithm in Quantitative Trait Locus (QTL) factor analysis.
    Bauman, L
    Sinsheimer, JS
    Lange, K
    AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (05) : 193 - 193
  • [38] Estimating the Variance of Estimator of the Latent Factor Linear Mixed Model Using Supplemented Expectation-Maximization Algorithm
    Angraini, Yenni
    Notodiputro, Khairil Anwar
    Folmer, Henk
    Saefuddin, Asep
    Toharudin, Toni
    SYMMETRY-BASEL, 2021, 13 (07):
  • [39] A row-action alterative to the space-alternating generalized expectation-maximization algorithm for image reconstruction in positron emission tomography
    Zhu, HQ
    Shu, HZ
    Luo, LM
    Jian, Z
    IEEE 11TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, 2004, : 325 - 328
  • [40] Comparison of SPECT lesion detectability between preconditioned alternating projection algorithm (PAPA) and expectation-maximization algorithm with total variation regularizer (EM-TV)
    Zhang, Jiahan
    Krol, Andrzej
    Li, Si
    Wu, Zhifeng
    Vogelsang, Levon
    Shen, Lixin
    Schmidtlein, Charles
    Lipson, Edward
    Xu, Yuesheng
    Feiglin, David
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55