Biological costs and benefits to plant-microbe interactions in the rhizosphere

被引:332
|
作者
Morgan, JAW [1 ]
Bending, GD [1 ]
White, PJ [1 ]
机构
[1] Univ Warwick, Warwick HRI, Warwick CV35 9EF, England
关键词
micro-organisms; mycorrhiza; nodulation; nutrition; phosphate; rhizosphere;
D O I
10.1093/jxb/eri205
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This review looks briefly at plants and their rhizosphere microbes, the chemical communications that exist, and the biological processes they sustain. Primarily it is the loss of carbon compounds from roots that drives the development of enhanced microbial populations in the rhizosphere when compared with the bulk soil, or that sustains specific mycorrhizal or legume associations. The benefits to the plant from this carbon loss are discussed. Overall the general rhizosphere effect could help the plant by maintaining the recycling of nutrients, through the production of hormones, helping to provide resistance to microbial diseases and to aid tolerance to toxic compounds. When plants lack essential mineral elements such as P or N, symbiotic relationships can be beneficial and promote plant growth. However, this benefit may be lost in wellfertilized (agricultural) soils where nutrients are readily available to plants and symbionts reduce growth. Since these rhizosphere associations are commonplace and offer key benefits to plants, these interactions would appear to be essential to their overall success.
引用
收藏
页码:1729 / 1739
页数:11
相关论文
共 50 条
  • [31] Engineering synthetic plant-microbe signal communication in the rhizosphere
    Paramasivan, P.
    Geddes, B.
    Poole, P. S.
    Oldroyd, G.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2019, 32 (10) : 9 - 9
  • [32] Climate Disruption of Plant-Microbe Interactions
    Rudgers, Jennifer A.
    Afkhami, Michelle E.
    Bell-Dereske, Lukas
    Chung, Y. Anny
    Crawford, Kerri M.
    Kivlin, Stephanie N.
    Mann, Michael A.
    Nunez, Martin A.
    ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 51, 2020, 2020, 51 : 561 - 586
  • [33] Pectins, pectinases and plant-microbe interactions
    Prade, RA
    Zhan, DF
    Ayoubi, P
    Mort, AJ
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, VOL 16, 1999, 16 : 361 - 391
  • [34] Alternative splicing in plant-microbe interactions
    Veronese, P.
    Heber, S.
    PHYTOPATHOLOGY, 2009, 99 (06) : S165 - S165
  • [35] PLANT-MICROBE INTERACTIONS Finding phenazine
    Kelly, Libusha
    Wolfson, Sarah J.
    ELIFE, 2020, 9
  • [36] The coevolutionary genetics of plant-microbe interactions
    Heath, Katy D.
    NEW PHYTOLOGIST, 2008, 180 (02) : 268 - 270
  • [37] The role of water in plant-microbe interactions
    Aung, Kyaw
    Jiang, Yanjuan
    He, Sheng Yang
    PLANT JOURNAL, 2018, 93 (04): : 771 - 780
  • [38] Interkingdom signaling in plant-microbe interactions
    Jinhong Kan
    Rongxiang Fang
    Yantao Jia
    Science China Life Sciences, 2017, 60 : 785 - 796
  • [39] Editorial: Biotrophic Plant-Microbe Interactions
    Spanu, Pietro D.
    Panstruga, Ralph
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [40] Interkingdom signaling in plant-microbe interactions
    Kan, Jinhong
    Fang, Rongxiang
    Jia, Yantao
    SCIENCE CHINA-LIFE SCIENCES, 2017, 60 (08) : 785 - 796