Magnetite Fe3O4 nanoparticles and hematite α-Fe2O3 uniform oblique hexagonal microdisks, drum-like particles and spindles and their magnetic properties

被引:30
|
作者
Xu, Gang [1 ]
Li, Lingling
Shen, Zhenju
Tao, Zhihong
Zhang, Yi
Tian, He
Wei, Xiao
Shen, Ge
Han, Gaorong
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
Hematite alpha-Fe2O3; Oxide materials; Magnetic properties; Scanning electron microscopy; ETHYLENE-GLYCOL; NANOSTRUCTURES; NANOCRYSTALS; NANORODS; MORPHOLOGY; NANOSHEETS; MECHANISM; GROWTH; ARRAYS;
D O I
10.1016/j.jallcom.2014.11.140
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetite Fe3O4 nanoparticles and uniform hematite (alpha-Fe2O3) oblique hexagonal microdisks, drum-like particles, and spindles have been synthesized via a facile hydrothermal reaction route, in which the mixture solvents of ethylene glycol (EG) and water are used as reaction medium. The phase, size, shape and growth orientation of the synthesized iron oxide crystals were characterized by powder X-ray diffraction and electron microscopy. When the reaction medium is almost composed of EG, a lot of Fe3+ ions reduce to Fe2+ ions due to the effect of EG, resulting in the magnetite Fe3O4 nanoparticles. As the volume ratio of EG/water in the reaction medium is lower than 30:10, the reductive ability of EG is too low to reduce the Fe3+ ions to Fe2+ ions, leading to the hematite alpha-Fe2O3 crystals. Moreover, since the adsorption of EG on the crystals, the shape of the obtained hematite alpha-Fe2O3 crystals evolves from oblique hexagonal microdisks to drum-like particles, and spindles due to the decrease of EG in the mixture reaction medium solvent. The magnetic properties of the magnetite Fe3O4 nanoparticles and hematite alpha-Fe2O3 uniform microcrystals were also investigated by measuring the magnetic hysteresis loops. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 50 条
  • [31] Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia
    Surowiec, Zbigniew
    Miaskowski, Arkadiusz
    Budzynski, Mieczyslaw
    NUKLEONIKA, 2017, 62 (02) : 183 - 186
  • [32] Magnetic Properties of Two-Phase Borosilicate Glasses Containing β-Fe2O3 and Fe3O4 Nanoparticles
    Borisov, S. A.
    Naberezhnov, A. A.
    Nacke, B.
    Nikanorov, A.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (08) : 808 - 811
  • [33] Magnetic characteristics of Fe3O4/α-Fe2O3 hybrid cubes
    Ma, Ji
    Chen, Kezheng
    Zhang, Xiaodan
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
  • [34] Kinetics for reduction of aciculate ultrafine α-Fe2O3 particles to Fe3O4 particles
    Li, CZ
    Hong, ZF
    JOURNAL OF SOLID STATE CHEMISTRY, 1997, 134 (02) : 248 - 252
  • [35] Magnetic Properties of Two-Phase Borosilicate Glasses Containing β-Fe2O3 and Fe3O4 Nanoparticles
    S. A. Borisov
    A. A. Naberezhnov
    B. Nacke
    A. Nikanorov
    Technical Physics Letters, 2020, 46 : 808 - 811
  • [36] Comparative study of the mechanochemical activation of magnetite (Fe3O4) and maghemite (γ-Fe2O3)
    Mitov, I.
    Cherkezova-Zheleva, Z.
    Mitrov, V.
    1997, Akademie Verlag GmbH, Berlin, Germany (161):
  • [37] Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings
    Li, Junli
    Hu, Jing
    Xiao, Lian
    Wang, Yunqiang
    Wang, Xilong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 625 : 677 - 685
  • [38] Magnetic properties of γ-Fe2O3 nanoparticles
    Predoi, D
    Kuncser, V
    Nogues, M
    Tronc, E
    Jolive, JP
    Filoti, G
    Schinteie, G
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2003, 5 (01): : 211 - 216
  • [39] Magnetic properties of γ-Fe2O3 nanoparticles
    Choi, B. J.
    Kim, S. H.
    Jeon, Y. T.
    Moon, J. Y.
    Lee, G. H.
    Chang, Y.
    Park, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (25-27): : 4422 - 4425
  • [40] Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles
    Ramesh, R.
    Sohila, S.
    Muthamizhchelvan, C.
    Rajalakshmi, M.
    Ramya, S.
    Ponnusamy, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (09) : 1357 - 1360