Magnetite Fe3O4 nanoparticles and hematite α-Fe2O3 uniform oblique hexagonal microdisks, drum-like particles and spindles and their magnetic properties

被引:30
|
作者
Xu, Gang [1 ]
Li, Lingling
Shen, Zhenju
Tao, Zhihong
Zhang, Yi
Tian, He
Wei, Xiao
Shen, Ge
Han, Gaorong
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
Hematite alpha-Fe2O3; Oxide materials; Magnetic properties; Scanning electron microscopy; ETHYLENE-GLYCOL; NANOSTRUCTURES; NANOCRYSTALS; NANORODS; MORPHOLOGY; NANOSHEETS; MECHANISM; GROWTH; ARRAYS;
D O I
10.1016/j.jallcom.2014.11.140
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetite Fe3O4 nanoparticles and uniform hematite (alpha-Fe2O3) oblique hexagonal microdisks, drum-like particles, and spindles have been synthesized via a facile hydrothermal reaction route, in which the mixture solvents of ethylene glycol (EG) and water are used as reaction medium. The phase, size, shape and growth orientation of the synthesized iron oxide crystals were characterized by powder X-ray diffraction and electron microscopy. When the reaction medium is almost composed of EG, a lot of Fe3+ ions reduce to Fe2+ ions due to the effect of EG, resulting in the magnetite Fe3O4 nanoparticles. As the volume ratio of EG/water in the reaction medium is lower than 30:10, the reductive ability of EG is too low to reduce the Fe3+ ions to Fe2+ ions, leading to the hematite alpha-Fe2O3 crystals. Moreover, since the adsorption of EG on the crystals, the shape of the obtained hematite alpha-Fe2O3 crystals evolves from oblique hexagonal microdisks to drum-like particles, and spindles due to the decrease of EG in the mixture reaction medium solvent. The magnetic properties of the magnetite Fe3O4 nanoparticles and hematite alpha-Fe2O3 uniform microcrystals were also investigated by measuring the magnetic hysteresis loops. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 50 条
  • [1] Plutonium reduction on synthetic magnetite (Fe3O4) and hematite (α-Fe2O3).
    Powell, BA
    Fjeld, RA
    Kaplan, DI
    Coates, JT
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U77 - U77
  • [2] Fe adsorption on hematite (α-Fe2O3) (0001) and magnetite (Fe3O4) (111) surfaces
    Pabisiak, Tomasz
    Kiejna, Adam
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (13):
  • [3] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Pan Lu
    Tang Jing
    Chen YongHong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) : 362 - 369
  • [4] Synthesis of Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    PAN Lu
    TANG Jing
    CHEN YongHong
    Science China(Chemistry), 2013, 56 (03) : 362 - 369
  • [5] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Lu Pan
    Jing Tang
    YongHong Chen
    Science China Chemistry, 2013, 56 : 362 - 369
  • [6] Thermodynamic Properties of α-Fe2O3 and Fe3O4 Nanoparticles
    Spencer, Elinor C.
    Ross, Nancy L.
    Olsen, Rebecca E.
    Huang, Baiyu
    Kolesnikov, Alexander I.
    Woodfield, Brian F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17): : 9609 - 9616
  • [7] KINETICS OF HEMATITE, FE2O3, REDUCTION TO MAGNETITE, FE3O4, IN TERMS OF A (00.1)-FACE
    BARO, R
    HEIZMANN, JJ
    BULLETIN DE LA SOCIETE FRANCAISE MINERALOGIE ET DE CRISTALLOGRAPHIE, 1969, 92 (04): : 394 - &
  • [8] A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance
    Can, Musa Mutlu
    Coskun, Mustafa
    Firat, Tezer
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 542 : 241 - 247
  • [9] THERMODYNAMIC DATA FOR WUSTITE, FEO.947O, MAGNETITE, FE3O4, AND HEMATITE, FE2O3
    HAAS, JL
    ROBIE, RA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 483 - &
  • [10] Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion
    Monazam, Esmail R.
    Breault, Ronald W.
    Siriwardane, Ranjani
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (34) : 13320 - 13328