Uncovering turbulent plasma dynamics via deep learning from partial observations

被引:38
|
作者
Mathews, A. [1 ]
Francisquez, M. [1 ,2 ]
Hughes, J. W. [1 ]
Hatch, D. R. [3 ]
Zhu, B. [4 ]
Rogers, B. N. [5 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[3] Univ Texas Austin, Inst Fus Studies, Austin, TX 78704 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[5] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
基金
加拿大自然科学与工程研究理事会;
关键词
NEURAL-NETWORKS; TRANSPORT; EQUATIONS; MODEL;
D O I
10.1103/PhysRevE.104.025205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One of the most intensely studied aspects of magnetic confinement fusion is edge plasma turbulence which is critical to reactor performance and operation. Drift-reduced Braginskii two-fluid theory has for decades been widely applied to model boundary plasmas with varying success. Towards better understanding edge turbulence in both theory and experiment, we demonstrate that a physics-informed deep learning framework constrained by partial differential equations can accurately learn turbulent fields consistent with the two-fluid theory from partial observations of electron pressure which is not otherwise possible using conventional equilibrium models. This technique presents a paradigm for the advanced design of plasma diagnostics and validation of magnetized plasma turbulence theories in challenging thermonuclear environments.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] FRIEDRICHS LEARNING: WEAK SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS VIA DEEP LEARNING
    Chen, Fan
    Huang, Jianguo
    Wang, Chunmei
    Yang, Haizhao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : A1271 - A1299
  • [22] Partial results on social learning with observations from neighbors
    Lobel, Ilan
    Acemoglu, Daron
    Dahleh, Munther
    Ozdaglar, Asuman
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5995 - +
  • [23] Learning to Play Robot Soccer from Partial Observations
    Szemenyei, Marton
    Reizinger, Patrik
    2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [24] Learning to Predict Navigational Patterns From Partial Observations
    Karlsson, Robin
    Carballo, Alexander
    Lepe-Salazar, Francisco
    Fujii, Keisuke
    Ohtani, Kento
    Takeda, Kazuya
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5592 - 5599
  • [25] Deep Learning Improves Global Satellite Observations of Ocean Eddy Dynamics
    Martin, Scott A.
    Manucharyan, Georgy E.
    Klein, Patrice
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (17)
  • [26] Uncovering tissue-specific binding features from differential deep learning
    Phuycharoen, Mike
    Zarrineh, Peyman
    Bridoux, Laure
    Amin, Shilu
    Losa, Marta
    Chen, Ke
    Bobola, Nicoletta
    Rattray, Magnus
    NUCLEIC ACIDS RESEARCH, 2020, 48 (05) : E27
  • [27] Live imaging of laser machining via plasma deep learning
    Grant-Jacob, James A.
    Mills, Ben
    Zervas, Michalis N.
    OPTICS EXPRESS, 2023, 31 (25) : 42581 - 42594
  • [28] Acoustic and plasma sensing of laser ablation via deep learning
    Grant-Jacob, James A.
    Mills, Ben
    Zervas, Michalis N.
    OPTICS EXPRESS, 2023, 31 (17) : 28413 - 28422
  • [29] Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning
    Zhang, Chao
    Zhang, Keyang
    Yuan, Quan
    Peng, Haoruo
    Zheng, Yu
    Hanratty, Tim
    Wang, Shaowen
    Han, Jiawei
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, : 361 - 370
  • [30] Learning to complete partial observations from unpaired prior knowledge
    Lu, Chenyang
    Dubbelman, Gijs
    PATTERN RECOGNITION, 2020, 107