Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

被引:56
|
作者
Gorbatov, O. I. [1 ,2 ,3 ]
Lomaev, I. L. [1 ,4 ,5 ]
Gornostyrev, Yu. N. [1 ,4 ,5 ]
Ruban, A. V. [2 ,6 ]
Furrer, D. [7 ]
Venkatesh, V. [7 ]
Novikov, D. L. [8 ]
Burlatsky, S. F. [8 ]
机构
[1] Inst Quantum Mat Sci, Ekaterinburg 620107, Russia
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Nosov Magnitogorsk State Tech Univ, Magnitogorsk 455000, Russia
[4] Sci Technol LLC, Leninskiy Pr T 95, Moscow 119313, Russia
[5] RAS, Ural Div, Inst Met Phys, Ekaterinburg 620219, Russia
[6] Mat Ctr Leoben Forsch GmbH, A-8700 Leoben, Austria
[7] Pratt & Whitney, 400 Main St, E Hartford, CT 06108 USA
[8] United Technol Res Ctr, 411 Silver Lane, E Hartford, CT 06108 USA
关键词
SITE PREFERENCE; DEFORMATION MICROSTRUCTURE; STACKING-FAULTS; ANOMALOUS FLOW; L1(2); TEMPERATURE; TRANSITION; BINARY; PHASE; 1ST-PRINCIPLES;
D O I
10.1103/PhysRevB.93.224106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of composition on the antiphase boundary (APB) energy of Ni-based L1(2)-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric gamma' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3d row. The elements from the left side of the 3d row increase the APB energy of the Ni-based L1(2)-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The influence of deformation on the magnetic properties of Ni3Al based alloys
    Kazantseva, N. V.
    Pilugin, V. P.
    Zavalishin, V. A.
    Rigmant, M. B.
    Davidov, D. I.
    Stepanova, N. N.
    [J]. LETTERS ON MATERIALS, 2013, 3 (01): : 16 - 19
  • [42] SLIP FEATURE AND GRAIN BOUNDARY BEHAVIOURS OF Ni3Al ALLOYS DURING DEFORMATION
    LIN Dongliang
    (T.L.Lin)
    CHEN Da Shanghai Jiaotong University
    [J]. Acta Metallurgica Sinica(English Letters), 1990, (06) : 379 - 384
  • [43] Advances in Industrial Applications of Ni3Al Intermetallics Based Alloys
    叶武俊
    [J]. High Technology Letters, 1995, (02) : 90 - 94
  • [44] MAGNETIC AND STRUCTURAL-PROPERTIES OF NI3AL BASED ALLOYS
    ULHAQ, I
    BOOTH, JG
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 62 (2-3) : 256 - 268
  • [45] Deformation and annealing behaviour of two Ni3Al based alloys
    Ray, RK
    [J]. TEXTURES OF MATERIALS, PTS 1 AND 2, 2002, 408-4 : 541 - 546
  • [46] An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries
    Friak, Martin
    Golian, Miroslav
    Holec, David
    Koutna, Nikola
    Sob, Mojmir
    [J]. NANOMATERIALS, 2020, 10 (01)
  • [47] Magnetic perturbation and associated energies of the antiphase boundaries in ordered Ni3Al
    Manga, Venkateswara Rao
    Saal, James E.
    Wang, Yi
    Crespi, Vincent H.
    Liu, Zi-Kui
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (10)
  • [48] Magnetism of Ni3Al and Fe3Al under extreme pressure and shape deformation:: an ab initio study
    Sob, M.
    Legut, D.
    Friak, M.
    Fiala, J.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : E205 - E206
  • [49] Effect of alloying with boron on the phase composition and structure of Ni3Al
    N. A. Koneva
    N. A. Popova
    M. P. Kalashnikov
    E. L. Nikonenko
    M. V. Fedorishcheva
    A. D. Pasenova
    E. V. Kozlov
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76 (7) : 740 - 743
  • [50] Initial-Stage Oxidation of Ni3Al(100) and -(110) from Ab Initio Thermodynamics
    Wang, Likun
    Cai, Canying
    Zhou, Yichun
    Zhou, Guangwen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (35): : 19191 - 19200