Multispectral illumination estimation using deep unrolling network

被引:15
|
作者
Li, Yuqi [1 ]
Fu, Qiang [1 ]
Heidrich, Wolfgang [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
关键词
D O I
10.1109/ICCV48922.2021.00267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the problem of illumination spectra estimation in multispectral images. We cast the problem into a constrained matrix factorization problem and present a method for both single-global and multiple illumination estimation in which a deep unrolling network is constructed from the alternating direction method of multipliers(ADMM) optimization for solving the matrix factorization problem. To alleviate the lack of multispectral training data, we build a large multispectral reflectance image dataset for generating synthesized data and use them for training and evaluating our model. The results of simulations and real experiments demonstrate that the proposed method is able to outperform state-of-the-art spectral illumination estimation methods, and that it generalizes well to a wide variety of scenes and spectra.
引用
收藏
页码:2652 / 2661
页数:10
相关论文
共 50 条
  • [41] A robust and fast multispectral pedestrian detection deep network
    Ding, Lu
    Wang, Yong
    Laganiere, Robert
    Huang, Dan
    Luo, Xinbin
    Zhang, Huanlong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [42] A Deep Unfolding Network for Multispectral and Hyperspectral Image Fusion
    Zhang, Bihui
    Cao, Xiangyong
    Meng, Deyu
    [J]. Remote Sensing, 2024, 16 (21)
  • [43] Illumination-Guided Transformer-Based Network for Multispectral Pedestrian Detection
    Chu, Fuchen
    Cao, Jiale
    Shao, Zhuang
    Pang, Yanwei
    [J]. ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 343 - 355
  • [44] FISTA-CSNet: a deep compressed sensing network by unrolling iterative optimization algorithm
    Liqi Xin
    Dingwen Wang
    Wenxuan Shi
    [J]. The Visual Computer, 2023, 39 : 4177 - 4193
  • [45] Deep Neural Models for Illumination Estimation and Relighting: A Survey
    Einabadi, Farshad
    Guillemaut, Jean-Yves
    Hilton, Adrian
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (06) : 315 - 331
  • [46] Improved Estimation of Aboveground Biomass in Rubber Plantations Using Deep Learning on UAV Multispectral Imagery
    Tan, Hongjian
    Kou, Weili
    Xu, Weiheng
    Wang, Leiguang
    Wang, Huan
    Lu, Ning
    [J]. Drones, 2025, 9 (01)
  • [47] Very Deep Learning-Based Illumination Estimation Approach With Cascading Residual Network Architecture (CRNA)
    Choi, Ho-Hyoung
    Yun, Byoung-Ju
    [J]. IEEE ACCESS, 2021, 9 : 133552 - 133560
  • [48] End-to-End Deep Neural Network for Illumination Consistency and Global Illumination
    Huang Jingtao
    Komuro, Takashi
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I, 2022, 13598 : 392 - 403
  • [49] DEEP UNROLLING FOR MAGNETIC RESONANCE FINGERPRINTING
    Chen, Dongdong
    Davies, Mike E.
    Golbabaee, Mohammad
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [50] FISTA-CSNet: a deep compressed sensing network by unrolling iterative optimization algorithm
    Xin, Liqi
    Wang, Dingwen
    Shi, Wenxuan
    [J]. VISUAL COMPUTER, 2023, 39 (09): : 4177 - 4193