Monolithic integration of an infrared photon detector with a MEMS-based tunable filter

被引:52
|
作者
Musca, CA [1 ]
Antoszewski, J
Winchester, KJ
Keating, AJ
Nguyen, T
Silva, KKMBD
Dell, JM
Faraone, L
Mitra, P
Beck, JD
Skokan, MR
Robinson, JE
机构
[1] Univ Western Australia, Microelect Res Grp, Sch Elect Elect & Comp Engn, Crawley 6009, Australia
[2] DRS Infrared Technol, Dallas, TX 75243 USA
基金
澳大利亚研究理事会;
关键词
Bragg; detectors; infrared (IR); microelectromechanical system (MEMS); silicon nitride; tunable;
D O I
10.1109/LED.2005.859651
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The monolithic integration of a low-temperature microelectromechanical system (MEMS) and HgCdTe infrared detector technology has been implemented and characterized. The MEMS-based tunable optical filter, integrated with an infrared detector, selects narrow wavelength bands in the range from 1.6 to 2.5 mu m within the short-wavelength infrared (SWIR) region of the electromagnetic spectrum. The entire fabrication process is compatible with two-dimensional infrared focal plane array technology. The fabricated device consists of an HgCdTe SWIR photoconductor, two distributed Bragg mirrors formed of Ge-SiO-Ge, a sacrificial spacer layer Within the cavity, which is then removed to leave an air gap, and a silicon nitride membrane for structural support. The tuning spectrum from fabricated MEMS filters on photoconductive detectors shows a wide tuning range, and high percentage transmission is achieved with a tuning voltage of only 7.5 V. The full-width at half-maximum ranged from 95 to 105 nm over a tuning range of 2.2-1.85 mu m.
引用
收藏
页码:888 / 890
页数:3
相关论文
共 50 条
  • [31] MEMS-based tunable flat-top narrow-band optical filter
    Mi R.
    Wan Z.
    Wang H.
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2016, 45 (07):
  • [32] Design and fabrication of MEMS-based monolithic fuel cells
    Kuriyama, Nariaki
    Kubota, Tadahiro
    Okamura, Daisuke
    Suzuki, Toshifumi
    Sasahara, Jun
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 (354-362) : 354 - 362
  • [33] A MEMS-Based Temperature-Compensated Vacuum Sensor for Low-Power Monolithic Integration
    Taghvaei, M. A.
    Cicek, P. -V.
    Allidina, K.
    Nabki, F.
    El-Gamal, M. N.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 3276 - 3279
  • [34] Design and fabrication of mems-based monolithic fuel cells
    Kuriyama, Nariaki
    Kubota, Tadahiro
    Okamura, Daisuke
    Suzuki, Toshifumi
    Sasahara, Jun
    [J]. TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [35] A MEMS-Based Quad-Wavelength Hybrid Plasmonic-Pyroelectric Infrared Detector
    Anh Tung Doan
    Yokoyama, Takahiro
    Thang Duy Dao
    Ishii, Satoshi
    Ohi, Akihiko
    Nabatame, Toshihide
    Wada, Yoshiki
    Maruyama, Shigenao
    Nagao, Tadaaki
    [J]. MICROMACHINES, 2019, 10 (06)
  • [36] MEMS infrared gas spectrometer based on a porous silicon tunable filter
    Lammel, G
    Schweizer, S
    Renaud, P
    [J]. 14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2001, : 578 - 581
  • [37] Dynamic MEMS-based photonic bandgap filter
    Trimm, RH
    Tuck, EJ
    Tuck, G
    Buncick, MC
    Kranz, M
    Reiner, P
    Temmen, MG
    Ashley, PR
    [J]. IEEE SENSORS JOURNAL, 2005, 5 (06) : 1451 - 1461
  • [38] A MEMS-based amplified switch filter bank
    不详
    [J]. MICROWAVE JOURNAL, 2004, 47 (12) : 136 - +
  • [39] MEMS-Based Tunable LC Bandstop Filter With an Ultra-Wide Continuous Tuning Range
    Lee, Hyung Suk
    Choi, Dong-Hoon
    Yoon, Jun-Bo
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (11) : 710 - 712
  • [40] MEMS-based integration advances digital isolation
    Suchmann, D
    [J]. ELECTRONIC PRODUCTS MAGAZINE, 2000, 43 (03): : 23 - 23