Strong diffusion approximations for recursive stochastic algorithms

被引:6
|
作者
PezeshkiEsfahani, H [1 ]
Heunis, AJ [1 ]
机构
[1] UNIV WATERLOO,DEPT ELECT & COMP ENGN,WATERLOO,ON N2L 3G1,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
stochastic approximation algorithms; invariance principles; diffusion approximations;
D O I
10.1109/18.556109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lai and Robbins prove strong diffusion approximations for the Robbins-Monro stochastic approximation algorithm. We show that similar strong approximations hold for stochastic algorithms at the level of generality proposed in the monograph of Benveniste, Metivier, and Priouret, wherein algorithms with generally discontinous right-hand sides driven by conditionally Markovian data are considered. The relevance of our result is demonstrated on an estimation algorithm with a discontinuous right-hand side which is used in data communication.
引用
收藏
页码:512 / 523
页数:12
相关论文
共 50 条