RECURSIVE STOCHASTIC ALGORITHMS FOR GLOBAL OPTIMIZATION IN RD

被引:137
|
作者
GELFAND, SB
MITTER, SK
机构
[1] MIT,DEPT ELECT ENGN & COMP SCI,CAMBRIDGE,MA 02139
[2] MIT,INFORMAT & DECIS SYST LAB,CAMBRIDGE,MA 02139
关键词
GLOBAL OPTIMIZATION; RANDOM OPTIMIZATION; SIMULATED ANNEALING; STOCHASTIC GRADIENT ALGORITHMS; DIFFUSIONS;
D O I
10.1137/0329055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm of the form X(k+1) = X(k) - a(k)(nabla U(X(k) + xi-k) + b(k) W(k), where U(.) is a smooth function on R(d), {xi-k} is a sequence of R(d)-valued random variables, {W(k)} is a sequence of independent standard d-dimensional Gaussian random variables, a(k) = A/k and b(k) = square-root B/ square-root k log log k for k large, is considered. An algorithm of this type arises by adding slowly decreasing white Gaussian noise to a stochastic gradient algorithm. It is shown, under suitable conditions on U(.), {xi-k}, A, and B, that X(k) converges in probability to the set of global minima of U(.). No prior information is assumed as to what bounded region contains a global minimum. The analysis is based on the asymptotic behavior of the related diffusion process dY(t) = -nabla U(Y(t))dt + c(t)dW(t), where W(.) is a standard d-dimensional Wiener process and c(t) = square-root C/square-root log t for t large.
引用
收藏
页码:999 / 1018
页数:20
相关论文
共 50 条
  • [1] Recursive algorithms for stock liquidation: A stochastic optimization approach
    Yin, G
    Liu, RH
    Zhang, Q
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) : 240 - 263
  • [2] On Benchmarking Stochastic Global Optimization Algorithms
    Hendrix, Eligius M. T.
    Lancinskas, Algirdas
    [J]. INFORMATICA, 2015, 26 (04) : 649 - 662
  • [3] On the Investigation of Stochastic Global Optimization Algorithms
    Bill Baritompa
    Eligius M. T. Hendrix
    [J]. Journal of Global Optimization, 2005, 31 : 567 - 578
  • [4] On the investigation of stochastic global optimization algorithms
    Baritompa, B
    Hendrix, EMT
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (04) : 567 - 578
  • [5] On Local Convergence of Stochastic Global Optimization Algorithms
    Hendrix, Eligius M. T.
    Rocha, Ana Maria A. C.
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT V, 2021, 12953 : 456 - 472
  • [6] ON DISTRIBUTED STOCHASTIC GRADIENT ALGORITHMS FOR GLOBAL OPTIMIZATION
    Swenson, Brian
    Sridhar, Anirudh
    Poor, H. Vincent
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8594 - 8598
  • [7] ANALYSIS OF RECURSIVE STOCHASTIC ALGORITHMS
    LJUNG, L
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (04) : 551 - 575
  • [8] Trend-Following Trading Using Recursive Stochastic Optimization Algorithms
    Nguyen, D.
    Yin, G.
    Zhang, Q.
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 7827 - 7832
  • [9] Global optimization of thermal conductivity using stochastic algorithms
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (04) : 511 - 535
  • [10] Stochastic global optimization algorithms: A systematic formal approach
    Gomez, Jonatan
    [J]. INFORMATION SCIENCES, 2019, 472 : 53 - 76