Preconditioned iterative methods for Navier-Stokes control problems

被引:14
|
作者
Pearson, John W. [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
PDE-constrained optimization; Navier-Stokes control; Picard iteration; preconditioning; Schur complement; PDE-CONSTRAINED OPTIMIZATION; KRYLOV-SCHUR METHODS; ROBUST PRECONDITIONERS; EQUATIONS; SOLVERS; PART; SYSTEMS; GMRES;
D O I
10.1016/j.jcp.2015.03.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PDE-constrained optimization problems are a class of problems which have attracted much recent attention in scientific computing and applied science. In this paper we discuss preconditioned iterative methods for a class of (time-independent) Navier-Stokes control problems, one of the main problems of this type in the field of fluid dynamics. Having detailed the Picard-type iteration we use to solve the problems and derived the structure of the matrix system to be solved at each step, we utilize the theory of saddle point systems to develop efficient preconditioned iterative solution techniques for these problems. We also require theory of solving convection-diffusion control problems, as well as a commutator argument to justify one of the components of the preconditioner. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:194 / 207
页数:14
相关论文
共 50 条
  • [21] Iterative methods in solving Navier-Stokes equations by the boundary element method
    Hribersek, M
    Skerget, L
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (01) : 115 - 139
  • [22] Parallel iterative methods for Navier-Stokes equations and application to stability assessment
    Graham, IG
    Spence, A
    Vainikko, E
    EURO-PAR 2002 PARALLEL PROCESSING, PROCEEDINGS, 2002, 2400 : 705 - 714
  • [23] Parallel iterative methods for Navier-Stokes equations and application to eigenvalue computation
    Graham, IG
    Spence, A
    Vainikko, E
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2003, 15 (11-12): : 1151 - 1168
  • [24] ON A CLASS OF ITERATIVE METHODS FOR THE STATIONARY NAVIER-STOKES EQUATIONS .1.
    ABRASHIN, VN
    LAPKO, SL
    DIFFERENTIAL EQUATIONS, 1993, 29 (09) : 1355 - 1366
  • [25] ITERATIVE LINEARIZATION OF THE EVOLUTION NAVIER-STOKES EQUATIONS
    Golichev, I. I.
    UFA MATHEMATICAL JOURNAL, 2012, 4 (04): : 68 - 77
  • [26] A MULTIGRID SOLVER FOR CONTROL-CONSTRAINED NAVIER-STOKES CONTROL PROBLEMS
    Butt, M. M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 261 - 277
  • [27] Block preconditioned BiCGstab(2) for solving the Navier-Stokes equations
    Tiesinga, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 563 - 564
  • [28] Preconditioned JFNK method for solving compressible Navier-Stokes equations
    Liu Z.
    Zhang M.
    Nie X.
    Yang G.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2016, 46 (01): : 101 - 110
  • [29] Preconditioned iterations for the linearized Navier-Stokes system in rotation form
    Olshanskii, MA
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1074 - 1077
  • [30] Stability of preconditioned Navier-Stokes equations associated with a cavitation model
    Coutier-Delgosha, O
    Fortes-Patella, R
    Reboud, JL
    Hakimi, N
    Hirsch, C
    COMPUTERS & FLUIDS, 2005, 34 (03) : 319 - 349