Nonparametric additive model-assisted estimation for survey data

被引:11
|
作者
Wang, Li [1 ]
Wang, Suojin [2 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Calibration; Horvitz-Thompson estimator; Local linear regression; Model-assisted estimation; Spline; Superpopulation; REGRESSION; CALIBRATION; LIKELIHOOD; SPLINES;
D O I
10.1016/j.jmva.2011.03.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An additive model-assisted nonparametric method is investigated to estimate the finite population totals of massive survey data with the aid of auxiliary information. A class of estimators is proposed to improve the precision of the well known Horvitz-Thompson estimators by combining the spline and local polynomial smoothing methods. These estimators are calibrated, asymptotically design-unbiased, consistent, normal and robust in the sense of asymptotically attaining the Godambe-Joshi lower bound to the anticipated variance. A consistent model selection procedure is further developed to select the significant auxiliary variables. The proposed method is sufficiently fast to analyze large survey data of high dimension within seconds. The performance of the proposed method is assessed empirically via simulation studies. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1126 / 1140
页数:15
相关论文
共 50 条
  • [21] Nonparametric estimation of an additive quantile regression model
    Horowitz, JL
    Lee, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1238 - 1249
  • [22] Two-stage, model-assisted estimation using remotely sensed auxiliary data
    McRoberts, Ronald E.
    Naesset, Erik
    Heikkinen, Juha
    Strimbu, Victor
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 307
  • [23] Semiparametric model-assisted estimation for natural resource surveys
    Breidt, F. Jay
    Opsomer, Jean D.
    Johnson, Alicia A.
    Ranalli, M. Giovanna
    [J]. SURVEY METHODOLOGY, 2007, 33 (01) : 35 - 44
  • [24] Outlier robust model-assisted small area estimation
    Fabrizi, Enrico
    Salvati, Nicola
    Pratesi, Monica
    Tzavidis, Nikos
    [J]. BIOMETRICAL JOURNAL, 2014, 56 (01) : 157 - 175
  • [25] A Tutorial on Model-Assisted Estimation with Application to Forest Inventory
    McConville, Kelly S.
    Moisen, Gretchen G.
    Frescino, Tracey S.
    [J]. FORESTS, 2020, 11 (02):
  • [26] Model-assisted calibration of non-probability sample survey data using adaptive LASSO
    Chen, Jack Kuang Tsung
    Valliant, Richard L.
    Elliott, Michael R.
    [J]. SURVEY METHODOLOGY, 2018, 44 (01) : 117 - 144
  • [27] Conjugating remotely sensed data assimilation and model-assisted estimation for efficient multivariate forest inventory
    Hou, Zhengyang
    Yuan, Keyan
    Stahl, Goran
    McRoberts, Ronald E.
    Kangas, Annika
    Tang, Hao
    Jiang, Jingyi
    Meng, Jinghui
    Xu, Qing
    Li, Zengyuan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2023, 299
  • [28] Nonparametric estimation in a regression model with additive and multiplicative noise
    Chesneau, Christophe
    El Kolei, Salima
    Kou, Junke
    Navarro, Fabien
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
  • [29] Model-Assisted Forest Yield Estimation with Light Detection and Ranging
    Strunk, Jacob L.
    Reutebuch, Stephen E.
    Andersen, Hans-Erik
    Gould, Peter J.
    McGaughey, Robert J.
    [J]. WESTERN JOURNAL OF APPLIED FORESTRY, 2012, 27 (02): : 53 - 59
  • [30] Nonparametric estimation of a scalar diffusion model from discrete time data: a survey
    Gourieroux, Christian
    Nguyen, Hung T.
    Sriboonchitta, Songsak
    [J]. ANNALS OF OPERATIONS RESEARCH, 2017, 256 (02) : 203 - 219