The Mobius inversion formula for Fourier series applied to Bernoulli and Euler polynomials

被引:14
|
作者
Navas, Luis M. [2 ]
Ruiz, Francisco J. [3 ]
Varona, Juan L. [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
[2] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[3] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
关键词
Bernoulli polynomials; Euler polynomials; Fourier series; Mobius transform; Inversion formula; Rational arguments; Asymptotic properties;
D O I
10.1016/j.jat.2010.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz found the Fourier expansion of the Bernoulli polynomials over a century ago In general Fourier analysis can be fruitfully employed to obtain properties of the Bernoulli polynomials and related functions in a simple manner In addition applying the technique of Mobius inversion from analytic number theory to Fourier expansions, we derive identities involving Bernoulli polynomials Bernoulli numbers and the Mobius function this includes formulas for the Bernoulli polynomials at rational arguments Finally we show some asymptotic properties concerning the Bernoulli and Euler polynomials (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:22 / 40
页数:19
相关论文
共 50 条
  • [21] GENERALIZED MOBIUS INVERSION FORMULA
    LEWIS, DC
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (04): : 558 - &
  • [22] MULTIPLE BERNOULLI SERIES, AN EULER-MACLAURIN FORMULA, AND WALL CROSSINGS
    Boysal, Arzu
    Vergne, Michele
    [J]. ANNALES DE L INSTITUT FOURIER, 2012, 62 (02) : 821 - 858
  • [23] The Mobius inversion and Fourier coefficients
    Chen, ZD
    Shen, YN
    Ding, J
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2001, 117 (2-3) : 161 - 176
  • [24] A CONVOLUTION FORMULA FOR BERNOULLI POLYNOMIALS
    He, Yuan
    Zhang, Wenpeng
    [J]. ARS COMBINATORIA, 2013, 108 : 97 - 104
  • [25] A New Formula for the Bernoulli Polynomials
    István Mező
    [J]. Results in Mathematics, 2010, 58 : 329 - 335
  • [26] A New Formula for the Bernoulli Polynomials
    Mezo, Istvan
    [J]. RESULTS IN MATHEMATICS, 2010, 58 (3-4) : 329 - 335
  • [27] An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials
    Masjed-Jamei, Mohammad
    Beyki, M. R.
    Koepf, Wolfram
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 156
  • [28] BERNOULLI AND EULER NUMBERS AND ORTHOGONAL POLYNOMIALS
    CARLITZ, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1959, 26 (01) : 1 - 15
  • [29] Bernoulli and Euler Polynomials in Clifford Analysis
    G.F. Hassan
    L. Aloui
    [J]. Advances in Applied Clifford Algebras, 2015, 25 : 351 - 376
  • [30] A Note on the Generalized Bernoulli and Euler Polynomials
    Bao Quoc Ta
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (04): : 405 - 412