Tackling UCR's missing data problem: A multiple imputation approach

被引:5
|
作者
DeLang, Mason [1 ]
Taheri, Sema A. [1 ]
Hutchison, Robert [1 ]
Hawke, Nathan [1 ]
机构
[1] Measures Justice Inst, 421 Univ Ave, Rochester, NY 14607 USA
关键词
UCR; Missing data; Multiple imputation; Crime rate; CRIME;
D O I
10.1016/j.jcrimjus.2022.101882
中图分类号
DF [法律]; D9 [法律];
学科分类号
0301 ;
摘要
Purpose: This paper addresses concerns related to missing data in the UCR. We compare several methods using multiple imputation in an effort to improve the data. Methods: We develop a two-stage procedure for imputing missing values in the UCR. First, we use agencies' past reporting to impute missing values. Then, after merging in demographic data from the census, we use multiple imputation to fill in the remaining missing values. Several methods are considered, including multivariate normal imputation (MVNI) and multiple imputation by chained equations (MICE). Results: Methods are compared using a complete subset of the UCR with values systematically deleted. We find that a model using MICE with random forest prediction produces results that are comparable to the methods NACJD uses when preparing the county level UCR data. Conclusions: We recommend applying multiple imputation to the UCR rather than relying on the county level data published by NACJD. Not only are our results similar to NACJD's, but additionally, an approach using multiple imputation accounts for the uncertainty in imputed values, so that correct standard errors can be obtained in subsequent analyses.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multiple Imputation of Missing Data in Educational Production Functions
    Elasra, Amira
    [J]. COMPUTATION, 2022, 10 (04)
  • [32] Missing Data in Clinical Research: A Tutorial on Multiple Imputation
    Austin, Peter C.
    White, Ian R.
    Lee, Douglas S.
    van Buuren, Stef
    [J]. CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (09) : 1322 - 1331
  • [33] Multiple Imputation for Missing Data in Life Cycle Inventory
    Liu, Yu
    Gong, Xianzheng
    Wang, ZhiHong
    Liu, Wei
    Nie, Zuoren
    [J]. MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 21 - 27
  • [34] Multiple imputation of unordered categorical missing data: A comparison of the multivariate normal imputation and multiple imputation by chained equations
    Karangwa, Innocent
    Kotze, Danelle
    Blignaut, Renette
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) : 521 - 539
  • [35] Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
    O’Keeffe A.G.
    Farewell D.M.
    Tom B.D.M.
    Farewell V.T.
    [J]. Statistics in Biosciences, 2016, 8 (2) : 310 - 332
  • [36] Multiple Imputation A Flexible Tool for Handling Missing Data
    Li, Peng
    Stuart, Elizabeth A.
    Allison, David B.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (18): : 1966 - 1967
  • [37] Imputation Methods for Multiple Regression with Missing Heteroscedastic Data
    Asif, Muhammad
    Samart, Klairung
    [J]. THAILAND STATISTICIAN, 2022, 20 (01): : 1 - 15
  • [38] Handling missing data in nursing research with multiple imputation
    Kneipp, SM
    McIntosh, M
    [J]. NURSING RESEARCH, 2001, 50 (06) : 384 - 389
  • [39] Missing data and multiple imputation in clinical epidemiological research
    Pedersen, Alma B.
    Mikkelsen, Ellen M.
    Cronin-Fenton, Deirdre
    Kristensen, Nickolaj R.
    Tra My Pham
    Pedersen, Lars
    Petersen, Irene
    [J]. CLINICAL EPIDEMIOLOGY, 2017, 9 : 157 - 165
  • [40] Multiple imputation of missing genotype data for unrelated individuals
    Souverein, OW
    Zwinderman, AH
    Tanck, MWT
    [J]. ANNALS OF HUMAN GENETICS, 2006, 70 : 372 - 381