Fault Tolerant Control of Wind Turbine Using Robust Model Predictive Min-Max approach

被引:8
|
作者
Benlahrache, Mohamed A. [1 ]
Laib, Khaled [2 ]
Othman, Sami [1 ]
Sheibat-Othman, Nida [1 ]
机构
[1] Univ Lyon 1, LAGEP, CNRS, UMR 5007, F-69616 Villeurbanne, France
[2] Univ Lyon, Ecole Cent Lyon, F-69134 Ecully, France
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Robust model predictive control; Fault tolerant control; Min-Max approach; Wind turbines; Full load region;
D O I
10.1016/j.ifacol.2017.08.1622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Control and fault compensation in wind turbines represents a challenge due to the stochastic nature of the driving force of power generation in these systems, their inherent nonlinearity and high coupling between the control inputs. In this paper, robust nonlinear predictive control is considered in order to satisfy the control objectives in the full load regime. Model predictive control allows taking into account constraints on the inputs and outputs as well as model nonlinearity. Robust MPC allows taking into account parameter uncertainties, that are supposed in this work to be due to pitch angle actuator fault. A multi input multi output controller is developed to maintain the generated power at its nominal value and reduce the loads on the torque system. The controller is found to react actively to the fault and maintain the desired performance of the system by an increased solicitation of the non-faulty actuators. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9902 / 9907
页数:6
相关论文
共 50 条
  • [1] A robust least squares based approach to min-max model predictive control
    Jetto, L.
    Orsini, V.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (13) : 4807 - 4825
  • [2] Robust min-max model predictive control of linear systems with constraints
    Zeman, J
    Rohal'-Ilkiv, B
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 930 - 935
  • [3] Linearized min-max robust model predictive control: Application to the control of a bioprocess
    Benattia, S. E.
    Tebbani, S.
    Dumur, D.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (01) : 100 - 120
  • [4] Min-Max Economic Model Predictive Control
    Marquez, Alejandro
    Patino, Julian
    Espinosa, Jairo
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4410 - 4415
  • [5] Min-max model predictive control with robust zonotope-based observer
    Witheephanich, Kritchai
    Orihuela, Luis
    Garcia, Ramon A.
    Escano, Juan M.
    [J]. 2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [6] Robust Precision Position Tracking of Planar Motors Using Min-Max Model Predictive Control
    Huang, Su-Dan
    Peng, Kai-Yu
    Cao, Guang-Zhong
    Wu, Chao
    Xu, Junqi
    He, Jiangbiao
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 13265 - 13276
  • [7] Feedback min-max model predictive control using robust one-step sets
    Cychowski, Marcin T.
    O'Mahony, Tom
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (07) : 813 - 823
  • [8] Min-max Predictive Control of a Pilot Plant using a QP Approach
    Gruber, J. K.
    Ramirez, D. R.
    Alamo, T.
    Bordons, C.
    Camacho, E. F.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3415 - 3420
  • [9] A Min-Max Model Predictive Control Approach to Robust Power Management in Ambulatory Wireless Sensor Networks
    Witheephanich, Kritchai
    Escano, Juan M.
    de la Pena, David Munoz
    Hayes, Martin J.
    [J]. IEEE SYSTEMS JOURNAL, 2014, 8 (04): : 1060 - 1073
  • [10] Min-max model predictive control as a quadratic program
    de la Pena, D. Munoz
    Alamo, T.
    Ramirez, D. R.
    Camacho, E. F.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01): : 328 - 333