FRACTIONAL KELLER-SEGEL EQUATION: GLOBAL WELL-POSEDNESS AND FINITE TIME BLOW-UP

被引:0
|
作者
Lafleche, Laurent [1 ,2 ]
Salem, Samir [3 ]
机构
[1] Univ Paris Saclay, CNRS, Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] Univ Paris 09, CERE MADE, F-75775 Paris 16, France
[3] Univ Paris 09, PSL Res Univ, CNRS, Ctr Rech Math Decis CEREMADE,UMR 7534, F-75775 Paris 16, France
关键词
fractional diffusion with drift; fractional Laplacian; aggregation diffusion; mean field equation; AGGREGATION EQUATION; PROPAGATION; UNIQUENESS; DIFFUSION; CHAOS; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the aggregation diffusion equation partial derivative(t)rho = Delta(alpha/2) rho + lambda div((K*rho)rho), where Delta(alpha/2) denotes the fractional Laplacian and K= x/vertical bar x vertical bar(beta) is an attractive kernel. This equation is a generalization of the classical Keller-Segel equation, which arises in the modelling of the motion of cells. In the diffusion dominated case beta < alpha, we prove global well-posedness for an L-k(1) initial condition, and in the fair competition case beta = alpha for an L-k(1) boolean AND LlnL initial condition with small mass. In the aggregation dominated case beta > alpha, we prove global or local well-posedness for an L-p initial condition, depending on some smallness condition on the L-p norm of the initial condition. We also prove that finite time blow-up of even solutions occurs under some initial mass concentration criteria.
引用
收藏
页码:2055 / 2087
页数:33
相关论文
共 50 条
  • [1] Well-posedness and blow-up of the fractional Keller-Segel model on domains
    Costa, Masterson
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5569 - 5592
  • [2] Global well-posedness, blow-up phenomenon and ill-posedness for the hyperbolic Keller-Segel equations
    Meng, Zhiying
    Nie, Yao
    Ye, Weikui
    Yin, Zhaoyang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 413 : 828 - 850
  • [3] Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation
    Wei, Dongyi
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (02) : 388 - 401
  • [4] On the well-posedness for Keller-Segel system with fractional diffusion
    Wu, Gang
    Zheng, Xiaoxin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) : 1739 - 1750
  • [5] WELL-POSEDNESS FOR THE KELLER-SEGEL EQUATION WITH FRACTIONAL LAPLACIAN AND THE THEORY OF PROPAGATION OF CHAOS
    Huang, Hui
    Liu, Jian-Guo
    [J]. KINETIC AND RELATED MODELS, 2016, 9 (04) : 715 - 748
  • [6] The Microscopic Derivation and Well-Posedness of the Stochastic Keller-Segel Equation
    Huang, Hui
    Qiu, Jinniao
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (01)
  • [7] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [8] Global well-posedness of logarithmic Keller-Segel type systems
    Ahn, Jaewook
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 185 - 211
  • [9] Global well-posedness for nonlocal fractional Keller-Segel systems in critical Besov spaces
    Zhai, Zhichun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 3173 - 3189
  • [10] Global well-posedness for Keller-Segel system in Besov type spaces
    Iwabuchi, Tsukasa
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 930 - 948