Projective curves: multisecant schemes and lifting problems

被引:1
|
作者
Ballico, E
Chiarli, N [1 ]
Greco, S
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
D O I
10.1016/S0022-4049(03)00083-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Y subset of or equal to P" be a pure one-dimensional locally Cohen-Macaulay closed subscheme such that for every general hyperplane H there is a zero-dimensional subscheme Z(H) of Y boolean AND H and a subscheme C(H) of H with Z(H) subset of or equal to C(H). We prove, under certain assumptions on Y, length(Z(H)) and C(H), the existence of a subcurve Y' subset of or equal to Y and a scheme S subset of or equal to P" with Y' boolean AND H = Z(H) and S boolean AND H = C(H), for general H. The main cases we study are: C(H) rational normal curve and C(H) linear space. We prove also a lifting theorem for the property arithmetically Gorenstein, which generalizes a lifting theorem by Strano and Huneke-Ulrich. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] NONCOMMUTATIVE PROJECTIVE SCHEMES
    ARTIN, M
    ZHANG, JJ
    ADVANCES IN MATHEMATICS, 1994, 109 (02) : 228 - 287
  • [22] A deformation of projective schemes
    Van Oystaeyen, F
    COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY: PROCEEDINGS OF THE FERRARA MEETING IN HONOR OF MARIO FIORENTINI, 1999, 206 : 295 - 312
  • [23] On mixed projective curves
    Oka, Mutsuo
    SINGULARITIES IN GEOMETRY AND TOPOLOGY: STRASBOURG 2009, 2012, 20 : 133 - 147
  • [24] Sumsets and Projective Curves
    Elias, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [25] ON DEGENERATION OF PROJECTIVE CURVES
    BALLICO, E
    ELLIA, P
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 1 - 15
  • [26] THE GENUS OF PROJECTIVE CURVES
    CHIANTINI, L
    CILIBERTO, C
    DIGENNARO, V
    DUKE MATHEMATICAL JOURNAL, 1993, 70 (02) : 229 - 245
  • [27] Sumsets and Projective Curves
    J. Elias
    Mediterranean Journal of Mathematics, 2022, 19
  • [28] Monodromy of projective curves
    Pirola, GP
    Schlesinger, E
    JOURNAL OF ALGEBRAIC GEOMETRY, 2005, 14 (04) : 623 - 642
  • [29] EXTENSIONS OF PROJECTIVE CURVES
    TENDIAN, S
    AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (06) : 1469 - 1478
  • [30] Lifting measures to inducing schemes
    Pesin, Ya. B.
    Senti, S.
    Zhang, K.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 553 - 574