Asymptotics of polynomials orthogonal with respect to a discrete-complex Sobolev inner product

被引:2
|
作者
Rocha, IA
Salto, L
机构
[1] Univ Politecn Madrid, EUIT Telecomunicac, Dpto Matemat Aplicada, Madrid 28031, Spain
[2] Univ Carlos III Madrid, Dpto Matemat, Madrid 28911, Spain
关键词
orthogonal polynomials; Sobolev inner product;
D O I
10.1016/j.cam.2004.03.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu be a finite positive Borel measure supported on a compact set of the real line and introduce the discrete Sobolev-type inner product < f,g > = integral f(x) g(x) d mu(x) + (K)Sigma(k=1) (Nk)Sigma(i=o) M-k,M-i f((i)) (c(k)) g(i) (c(k)), where the mass points c(k) belong to supp(mu) and M-k,M-i are complex numbers such that M-k,(Nk) not equal 0. In this paper we investigate the asymptotics of the polynomials orthogonal with this product. When the mass points c(k) belong to C\supp(mu), the problem was solved in a paper by G. Lopez, et al. (Constr. Approx. 11 (1995) 107-137) and, for mass points in supp(mu) = [-1,1], the solution was given by I.A. Rocha et al. (J. Approx. Theory, 121 (2003) 336-356) provided that mu '(x) > 0 a.e. x is an element of [- 1, 1] and M-k,M-i are nonnegative constants. If mu is an element of M(0, 1), the possibility c(k) is an element of supp (mu)\[-1,1] must be considered. Here we solve this last case with complex constants M-k,M-i. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [41] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [42] A TOOL FOR LOCATING ZEROS OF ORTHOGONAL POLYNOMIALS IN SOBOLEV INNER-PRODUCT SPACES
    DEBRUIN, MG
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 49 (1-3) : 27 - 35
  • [43] A new approach to the asymptotics of Sobolev type orthogonal polynomials
    Alfaro, M.
    Moreno-Balcazar, J. J.
    Pena, A.
    Rezola, M. L.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 460 - 480
  • [44] Extension inside the disk of asymptotics for Sobolev orthogonal polynomials
    Berriochoa, E
    Cachafeiro, A
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (8-9) : 1263 - 1272
  • [45] Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials
    MartinezFinkelshtein, A
    MorenoBalcazar, JJ
    PijeiraCabrera, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) : 211 - 216
  • [46] Asymptotics and Zeros of Sobolev Orthogonal Polynomials on Unbounded Supports
    Francisco Marcellán
    Juan José Moreno Balcázar
    Acta Applicandae Mathematica, 2006, 94 : 163 - 192
  • [47] Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs
    Alfaro, M
    Moreno-Balcázar, JJ
    Pérez, TE
    Piñar, MA
    Rezola, ML
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 141 - 150
  • [48] Asymptotics on the support for sobolev orthogonal polynomials on a bounded interval
    Berriochoa, E
    Cachafeiro, A
    Garcia-Amor, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (3-4) : 381 - 391
  • [49] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures
    Martinez-Finkelshtein, A
    Moreno-Balcazar, JJ
    Perez, TE
    Pinar, MA
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) : 280 - 293
  • [50] Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports
    Marcellan, Francisco
    Jose Moreno Balcazar, Juan
    ACTA APPLICANDAE MATHEMATICAE, 2006, 94 (02) : 163 - 192