Computational investigation of Al/Si and Al/Mg ordering in aluminous tremolite amphiboles

被引:10
|
作者
Palin, EJ
Dove, MT
Welch, MD
Redfern, SAT
机构
[1] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[2] Nat Hist Museum, Dept Mineral, London SW7 5BD, England
关键词
cation ordering; tremolite-tschermakite; magnesiohornblende; amphibole; computer simulation;
D O I
10.1180/0026461056910232
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
The ([4])Al/Si and ([6])Al/Mg order-disorder behaviour of minerals in the tremolite-tschermakite solid solution (namely, end-member tschennakite and the 50:50 composition, magnesiohornblende) has been investigated by Monte Carlo simulation, using a model Hamiltonian in which atomic interaction parameters J(i) were derived from empirical lattice energy calculations, and chemical potential terms mu j (to express the preferences of cations for particular crystallographic sites) were derived from ab initio methods. The simulations performed were increasingly complex. Firstly, ordering in one tetrahedral double chain with Al:Si = 1:3 (tschermakite) was simulated. Although the low-temperature cation distribution in this system was ordered, there was no phase transition (due to the quasi-one-dimensional nature of the system). Next, interactions between tetrahedral Al:Si = 1:3 double chains were included, and a phase transition was observed, with the cation distribution in one double chain lining up with respect to that in the next. Finally, interactions between tetrahedral and octahedral sites were incorporated, to model the whole unit cell, and compositions corresponding to tschermakite and magnesiohornblende were investigated. The whole-cell simulation results compare favourably with experimental conclusions for magnesiohornblende, in that Al at T1 is preferred over Al at T2, and Al at M2 is favoured over that at M1 and M3, but the significant amount of Al at M1 is at odds with experimental observation.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条