Bootstrapping for efficient handwritten digit recognition

被引:10
|
作者
Saradhi, VV [1 ]
Murty, MN [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
bootstrapping; redundancy removal; condensed nearest neighbor; prototype selection; genetic algorithms; thresholding; classification accuracy;
D O I
10.1016/S0031-3203(00)00043-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present two algorithms for selecting prototypes from the given training data set. Here, we employ the bootstrap technique to preprocess the data. We compare the proposed algorithms with the condensed nearest-neighbor algorithm which is order dependent and a genetic-algorithm-based prototype selection scheme which is order independent. Algorithms proposed in this paper are found to be better than the condensed nearest neighbor and prototype selection methods in terms of classification accuracy. (C) 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1047 / 1056
页数:10
相关论文
共 50 条
  • [21] Hybrid CNN-GRU Model for High Efficient Handwritten Digit Recognition
    Vantruong Nguyen
    Cai, Jueping
    Chu, Jie
    [J]. 2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR 2019), 2019, : 66 - 71
  • [22] Steady Model for Classification of Handwritten Digit Recognition
    Ghosh, Anujay
    Pavate, Aruna
    Gholam, Vidit
    Shenoy, Gauri
    Mahadik, Shefali
    [J]. INNOVATION IN ELECTRICAL POWER ENGINEERING, COMMUNICATION, AND COMPUTING TECHNOLOGY, IEPCCT 2019, 2020, 630 : 401 - 412
  • [23] A Statistical Approach For Latin Handwritten Digit Recognition
    Zaqout, Ihab
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2011, 2 (10) : 37 - 40
  • [24] Using generative models for handwritten digit recognition
    Revow, M
    Williams, CKI
    Hinton, GE
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (06) : 592 - 606
  • [25] A trainable feature extractor for handwritten digit recognition
    Lauer, Fabien
    Suen, Ching Y.
    Bloch, Gerard
    [J]. PATTERN RECOGNITION, 2007, 40 (06) : 1816 - 1824
  • [26] FPGA Implementation of CNN for Handwritten Digit Recognition
    Xiao, Rui
    Shi, Junsheng
    Zhang, Chao
    [J]. PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1128 - 1133
  • [27] Handwritten Digit Recognition Using Bayesian ResNet
    Mhasakar P.
    Trivedi P.
    Mandal S.
    Mitra S.K.
    [J]. SN Computer Science, 2021, 2 (5)
  • [28] Metaheuristics for Feature Selection in Handwritten Digit Recognition
    Seijas, Leticia M.
    Carneiro, Raphael F.
    Santana, Clodomir J., Jr.
    Soares, Larissa S. L.
    Bezerra, Sabrina G. T. A.
    Bastos-Filho, Carmelo J. A.
    [J]. 2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,
  • [29] Neocognitron of a new version: Handwritten digit recognition
    Fukushima, K
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 987 - 992
  • [30] A Convolutional Neural Network for Handwritten Digit Recognition
    Guevara Neri, Maria Cristina
    Vergara Villegas, Osslan Osiris
    Cruz Sanchez, Vianey Guadalupe
    Nandayapa, Manuel
    Sossa Azuela, Juan Humberto
    [J]. INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2020, 11 (01): : 97 - 105