Nickel-Hydroxyapatite as Biomaterial Catalysts for Hydrogen Production via Glycerol Steam Reforming

被引:5
|
作者
Hakim, Lukman [1 ]
Yaakob, Zahira [2 ]
Ismail, Manal
Daud, Wan Ramli Wan
机构
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Bangi 43600, Malaysia
[2] Univ Kebangsaan Malaysia, Dept Chem Engn, Bangi 43600, Malaysia
来源
ADVANCED PRECISION ENGINEERING | 2010年 / 447-448卷
关键词
Glycerol; steam reforming; nickel/hydroxyapatite catalyst; hydrogen production; surface area;
D O I
10.4028/www.scientific.net/KEM.447-448.770
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nickel-hydroxyapatite as biomaterial catalysts exhibited high activity and selectivity in glycerol steam reforming. The catalytic steam reforming of glycerol (C3H8O3) for the production of hydrogen is carried out over nickel supported on hydroxyapatite [Ca-5(PO4)(3)(OH)] catalyst at 600 degrees C with atmospheric pressure and 120 minute time reaction. The catalysts were prepared by mean of wet impregnation method and varied nickel loadings (3, 6, 12 %) on hydroxyapatite. It is found that the 3% wt% Ni/HAP show higher hydrogen production rate over the other nickel loadings on hydroxyapatite, which is correlated with Ni/HAP catalyst surface area measured by BET adsorbtion and morphology of catalysts. Glycerol steam reforming with water-to-glycerol feed ratio 8/1 much more hydrogen production (77-82%) compared feed ratio 4/1. The catalysts were characterised by BET surface area and SEM-EDX techniques.
引用
收藏
页码:770 / +
页数:3
相关论文
共 50 条
  • [31] Hydrogen production from glycerol steam reforming over molybdena-alumina catalysts
    Mitran, Gheorghita
    Pavel, Octavian Dumitru
    Florea, Mihaela
    Mieritz, Daniel G.
    Seo, Dong-Kyun
    CATALYSIS COMMUNICATIONS, 2016, 77 : 83 - 88
  • [32] Ni Catalysts Based on Attapulgite for Hydrogen Production through the Glycerol Steam Reforming Reaction
    Charisiou, Nikolaos D.
    Sebastian, Victor
    Hinder, Steven J.
    Baker, Mark A.
    Polychronopoulou, Kyriaki
    Goula, Maria A.
    CATALYSTS, 2019, 9 (08)
  • [33] Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts
    Gallegos-Suarez, E.
    Guerrero-Ruiz, A.
    Rodriguez-Ramos, I.
    CARBON, 2016, 96 : 578 - 587
  • [34] Hydrogen and/or syngas production by combined steam and dry reforming of methane on nickel catalysts
    Dan, Monica
    Mihet, Maria
    Lazar, Mihaela D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (49) : 26254 - 26264
  • [35] Hydrogen production by glycerol steam-reforming over nickel and nickel-cobalt impregnated on alumina
    Sanchez, Esteban A.
    Comelli, Raul A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (16) : 8650 - 8655
  • [36] A thermodynamic analysis of hydrogen production by steam reforming of glycerol
    Adhikari, Sushil
    Fernando, Sandun
    Gwaltney, Steven R.
    To, S. D. Filip
    Bricka, R. Mark
    Steele, Philip H.
    Haryanto, Agus
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (14) : 2875 - 2880
  • [37] Steam reforming of glycerol for hydrogen production: Modeling study
    Silva, Joel M.
    Soria, M. A.
    Madeira, Luis M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1408 - 1418
  • [38] Glycerol steam reforming for hydrogen and synthesis gas production
    Tamosiunas, Andrius
    Valatkevicius, Pranas
    Gimzauskaite, Dovile
    Valincius, Vitas
    Jeguirim, Mejdi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (17) : 12896 - 12904
  • [39] Ni-based catalysts supported on La/AlZn/AlLa oxides for hydrogen production via glycerol steam reforming
    Macedo, M. Salome
    Kraleva, Elka
    Ehrich, Heike
    Soria, M. A.
    Madeira, Luis M.
    RENEWABLE ENERGY, 2024, 223
  • [40] Utilization of waste crude glycerol for hydrogen production via steam reforming over Ni-La-Zr catalysts
    Veiga, Santiago
    Faccio, Ricardo
    Romero, Mariano
    Bussi, Juan
    BIOMASS & BIOENERGY, 2020, 135