A solution approach to the weak linear bilevel programming problems

被引:17
|
作者
Zheng, Yue [1 ]
Fang, Debin [2 ]
Wan, Zhongping [3 ,4 ]
机构
[1] Huaibei Normal Univ, Sch Management, Huaibei, Peoples R China
[2] Wuhan Univ, Econ & Management Sch, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilevel programming; pessimistic solution; Kth-Best algorithm; EXISTENCE; OPTIMIZATION;
D O I
10.1080/02331934.2016.1154553
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the weak linear bilevel programming problems. For such problems, under some conditions, we first conclude that there exists a solution which is a vertex of the constraint region. Based on the classical Kth-Best algorithm, we then present a solution approach. Finally, an illustrative example shows that the proposed approach is feasible.
引用
收藏
页码:1437 / 1449
页数:13
相关论文
共 50 条
  • [31] Test problem construction for linear bilevel programming problems
    Moshirvaziri, K
    Amouzegar, MA
    Jacobsen, SE
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1996, 8 (03) : 235 - 243
  • [32] A Genetic Algorithm Based Fuzzy Goal Programming Solution Approach to Chance Constrained Bilevel Programming Problems
    Pal, Bijay Baran
    Chakraborti, Debjani
    Biswas, Papun
    [J]. 2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, 2009, : 175 - +
  • [33] An interval approach based on expectation optimization for fuzzy random bilevel linear programming problems
    Ren, Aihong
    Wang, Yuping
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (12) : 2075 - 2085
  • [34] A new vertex enumeration-based approach for bilevel linear-linear fractional programming problems
    Chen, Hui-Ju
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (07): : 1413 - 1427
  • [35] GENERATING LINEAR AND LINEAR-QUADRATIC BILEVEL PROGRAMMING-PROBLEMS
    CALAMAI, PH
    VICENTE, LN
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04): : 770 - 782
  • [36] A penalty method for solving bilevel linear fractional/linear programming problems
    Calvete, HI
    Galé, C
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2004, 21 (02) : 207 - 224
  • [37] On complexity of finding strong-weak solutions in bilevel linear programming
    Lagos, Tomas
    Prokopyev, Oleg A.
    [J]. OPERATIONS RESEARCH LETTERS, 2023, 51 (06) : 612 - 617
  • [38] A hybrid neural network approach to bilevel programming problems
    Lan, Kuen-Ming
    Wen, Ue-Pyng
    Shih, Hsu-Shih
    Lee, E. Stanley
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (08) : 880 - 884
  • [39] A Duality Approach for a Class of Semivectorial Bilevel Programming Problems
    Aboussoror, Abdelmalek
    Adly, Samir
    Saissi, Fatima Ezzahra
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2018, 46 (01) : 197 - 214
  • [40] A NEW METHOD FOR STRONG-WEAK LINEAR BILEVEL PROGRAMMING PROBLEM
    Zheng, Yue
    Wan, Zhongping
    Jia, Shihui
    Wang, Guangmin
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (02) : 529 - 547