Deep Learning and Glaucoma Specialists The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs

被引:108
|
作者
Phene, Sonia [1 ]
Dunn, R. Carter [1 ]
Hammel, Naama [1 ]
Liu, Yun [1 ]
Krause, Jonathan [1 ]
Kitade, Naho [1 ]
Schaekermann, Mike [1 ]
Sayres, Rory [1 ]
Wu, Derek J. [1 ]
Bora, Ashish [1 ]
Semturs, Christopher [1 ]
Misra, Anita [1 ]
Huang, Abigail E. [1 ]
Spitze, Arielle [2 ,3 ]
Medeiros, Felipe A. [4 ]
Maa, April Y. [5 ,6 ]
Gandhi, Monica [7 ]
Corrado, Greg S. [1 ]
Peng, Lily [1 ]
Webster, Dale R. [1 ]
机构
[1] Google LLC, Google Hlth, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[2] Virginia Ophthalmol Associates, Norfolk, VA USA
[3] Eastern Virginia Med Sch, Dept Ophthalmol, Norfolk, VA 23501 USA
[4] Duke Univ, Dept Ophthalmol, Durham, NC USA
[5] Emory Univ, Sch Med, Dept Ophthalmol, Atlanta, GA 30322 USA
[6] Atlanta Vet Affairs Med Ctr, Ophthalmol Sect, Atlanta, GA USA
[7] Dr Shroffs Charity Eye Hosp, New Delhi, India
基金
美国国家卫生研究院;
关键词
OPEN-ANGLE GLAUCOMA; DIABETIC-RETINOPATHY; CIRCUMLINEAR VESSEL; VALIDATION; ALGORITHM; AGREEMENT; DEFECTS;
D O I
10.1016/j.ophtha.2019.07.024
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To develop and validate a deep learning (DL) algorithm that predicts referable glaucomatous optic neuropathy (GON) and optic nerve head (ONH) features from color fundus images, to determine the relative importance of these features in referral decisions by glaucoma specialists (GSs) and the algorithm, and to compare the performance of the algorithm with eye care providers. Design: Development and validation of an algorithm. Participants: Fundus images from screening programs, studies, and a glaucoma clinic. Methods: A DL algorithm was trained using a retrospective dataset of 86 618 images, assessed for glaucomatous ONH features and referable GON (defined as ONH appearance worrisome enough to justify referral for comprehensive examination) by 43 graders. The algorithm was validated using 3 datasets: dataset A (1205 images, 1 image/patient; 18.1% referable), images adjudicated by panels of GSs; dataset B (9642 images, 1 image/ patient; 9.2% referable), images from a diabetic teleretinal screening program; and dataset C (346 images, 1 image/patient; 81.7% referable), images from a glaucoma clinic. Main Outcome Measures: The algorithm was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for referable GON and glaucomatous ONH features. Results: The algorithm's AUC for referable GON was 0.945 (95% confidence interval [CI], 0.929-0.960) in dataset A, 0.855 (95% CI, 0.841-0.870) in dataset B, and 0.881 (95% CI, 0.838-0.918) in dataset C. Algorithm AUCs ranged between 0.661 and 0.973 for glaucomatous ONH features. The algorithm showed significantly higher sensitivity than 7 of 10 graders not involved in determining the reference standard, including 2 of 3 GSs, and showed higher specificity than 3 graders (including 1 GS), while remaining comparable to others. For both GSs and the algorithm, the most crucial features related to referable GON were: presence of vertical cup-to-disc ratio of 0.7 or more, neuroretinal rim notching, retinal nerve fiber layer defect, and bared circumlinear vessels. Conclusions: A DL algorithm trained on fundus images alone can detect referable GON with higher sensitivity than and comparable specificity to eye care providers. The algorithm maintained good performance on an independent dataset with diagnoses based on a full glaucoma workup. (C) 2019 by the American Academy of Ophthalmology.
引用
收藏
页码:1627 / 1639
页数:13
相关论文
共 50 条
  • [1] Re: Phene et al.: Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs (Ophthalmology. 2019;126:1627-1639)
    Odaibo, Stephen G.
    [J]. OPHTHALMOLOGY, 2020, 127 (08) : E57 - E58
  • [2] Re: Phene et al.: Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs (Ophthalmology. 2019;126:1627-1639) REPLY
    Phene, Sonia
    Dunn, R. Carter
    Kitade, Naho
    Liu, Yun
    Hammel, Naama
    [J]. OPHTHALMOLOGY, 2020, 127 (08) : E58 - E59
  • [3] Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    [J]. Scientific Reports, 11
  • [4] Deep learning on fundus images detects glaucoma beyond the optic disc
    Hemelings, Ruben
    Elen, Bart
    Barbosa-Breda, Joao
    Blaschko, Matthew B.
    De Boever, Patrick
    Stalmans, Ingeborg
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Detection of Glaucoma Progression on Optic Disc Photographs (DP) with Deep Learning
    Mohammadzadeh, Vahid
    Broering, Alex
    Vepa, Arvind
    Pan, Zehao
    Oyler-Yaniv, Alon
    Salazar, Diana
    Nezhad, Golnoush Sadat Mahmoudi
    Martinyan, Jack
    Morales, Esteban
    Caprioli, Joseph
    Scalzo, Fabien
    Nouri-Mahdavi, Kouros
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [6] Author Correction: Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    [J]. Scientific Reports, 13
  • [7] Finding Glaucoma in Color Fundus Photographs Using Deep Learning
    Bojikian, Karine D.
    Lee, Cecilia S.
    Lee, Aaron Y.
    [J]. JAMA OPHTHALMOLOGY, 2019, 137 (12) : 1361 - 1362
  • [8] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Jahanzaib Latif
    Shanshan Tu
    Chuangbai Xiao
    Sadaqat Ur Rehman
    Azhar Imran
    Yousaf Latif
    [J]. SN Applied Sciences, 2022, 4
  • [9] Deep learning on fundus images detects glaucoma beyond the optic disc (vol 11, 20313, 2021)
    Hemelings, Ruben
    Elen, Bart
    Barbosa-Breda, Joao
    Blaschko, Matthew B.
    De Boever, Patrick
    Stalmans, Ingeborg
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Latif, Jahanzaib
    Tu, Shanshan
    Xiao, Chuangbai
    Rehman, Sadaqat Ur
    Imran, Azhar
    Latif, Yousaf
    [J]. SN APPLIED SCIENCES, 2022, 4 (04)