Krull and Noetherian dimensions for modules over formal triangular matrix rings

被引:0
|
作者
Haghany, A [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
来源
关键词
Krull dimension; Noetherian dimension; critical module; atomic module; formal triangular matrix ring;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Necessary and sufficient conditions are found on modules over a formal triangular matrix ring to have Krull and/or Noetherian dimension. Also, critical and atomic modules are characterized.
引用
收藏
页码:403 / 406
页数:4
相关论文
共 50 条
  • [41] LINEARLY COMPACT MODULES OVER NOETHERIAN RINGS
    FAKHRUDD.SM
    JOURNAL OF ALGEBRA, 1973, 24 (03) : 544 - 550
  • [42] FINITELY EMBEDDED MODULES OVER NOETHERIAN RINGS
    GINN, SM
    MOSS, PB
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (04) : 709 - 710
  • [43] MODULES OVER HEREDITARY NOETHERIAN PRIME RINGS
    SINGH, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (03): : A389 - A389
  • [44] FI-modules over Noetherian rings
    Church, Thomas
    Ellenberg, Jordan S.
    Farb, Benson
    Nagpal, Rohit
    GEOMETRY & TOPOLOGY, 2014, 18 (05) : 2951 - 2984
  • [45] Modules over hereditary Noetherian prime rings
    Tuganbaev, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (02) : 363 - 364
  • [46] FIm-modules over Noetherian rings
    Li, Liping
    Yu, Nina
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (08) : 3436 - 3460
  • [47] Cotilting modules over commutative Noetherian rings
    Stovicek, Jan
    Trlifaj, Jan
    Herbera, Dolors
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (09) : 1696 - 1711
  • [48] Simple-Direct Modules Over Formal Matrix Rings
    Abyzov, A. N.
    Tapkin, D. T.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (01) : 1 - 14
  • [49] Simple-Direct Modules Over Formal Matrix Rings
    A. N. Abyzov
    D. T. Tapkin
    Lobachevskii Journal of Mathematics, 2021, 42 : 1 - 14
  • [50] NOETHERIAN RINGS WITH KRULL DIMENSION ONE
    LENAGAN, TH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 15 (JAN): : 41 - 47