Multi-scale Deep Nearest Neighbors

被引:0
|
作者
Chauhan, Abhijeet [1 ]
Davoudi, Omid [1 ]
Komeili, Majid [1 ]
机构
[1] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/IJCNN52387.2021.9534282
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a differentiable loss function for learning an embedding space by minimizing the upper bound of the leave-one-out classification error rate of 1-nearest neighbor classification error in the latent space. To evaluate the resulting space, in addition to the classification performance, we examine the problem of finding subclasses. In many applications, it is desired to detect unknown subclasses that might exist within known classes. For example, discovering subtypes of a known disease may help develop customized treatments. Analogous to the hierarchical clustering, subclasses might exist on different scales. The proposed method provides a mechanism to target subclasses in different scales.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Deep learning for multi-scale smart energy forecasting
    Ahmad, Tanveer
    Chen, Huanxin
    [J]. ENERGY, 2019, 175 : 98 - 112
  • [22] Multi-scale Deep Learning for Gesture Detection and Localization
    Neverova, Natalia
    Wolf, Christian
    Taylor, Graham W.
    Nebout, Florian
    [J]. COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 474 - 490
  • [23] Multi-scale digital soil mapping with deep learning
    Behrens, Thorsten
    Schmidt, Karsten
    MacMillan, Robert A.
    Rossel, Raphael A. Viscarra
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [24] Understanding Mobility via Deep Multi-Scale Learning
    Zhang, Rui
    Xie, Peng
    Wang, Chen
    Liu, Gaoyang
    Wan, Shaohua
    [J]. 2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 487 - 494
  • [25] The Multi-Scale Deep Decoder for the Standard HEVC Bitstreams
    Wang, Tingting
    Xiao, Wenhui
    Chen, Mingjin
    Chao, Hongyang
    [J]. 2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, : 197 - 206
  • [26] MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
    Yang, Qiaoqiao
    Wang, Guangxing
    Zhao, Yaxuan
    Zhang, Xiaoyu
    Dong, Guoshuai
    Ren, Peng
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4967 - 4970
  • [27] RGBD deep multi-scale network for background subtraction
    Houhou, Ihssane
    Zitouni, Athmane
    Ruichek, Yassine
    Bekhouche, Salah Eddine
    Kas, Mohamed
    Taleb-Ahmed, Abdelmalik
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (03) : 395 - 407
  • [28] Multi-scale digital soil mapping with deep learning
    Thorsten Behrens
    Karsten Schmidt
    Robert A. MacMillan
    Raphael A. Viscarra Rossel
    [J]. Scientific Reports, 8
  • [29] Multi-scale volumes for deep object detection and localization
    Ohn-Bar, Eshed
    Trivedi, Mohan Manubhai
    [J]. PATTERN RECOGNITION, 2017, 61 : 557 - 572
  • [30] Multi-scale Deep Representation Learning for Face Detection
    Han, Jifei
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,