Parallel resolvent Monte Carlo algorithms for linear algebra problems

被引:27
|
作者
Dimov, I
Alexandrov, V
Karaivanova, A
机构
[1] Bulgarian Acad Sci, CLPP, BU-1113 Sofia, Bulgaria
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
关键词
Monte Carlo algorithms; Markov chain; resolvent MC (RMC) algorithm;
D O I
10.1016/S0378-4754(00)00243-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider Monte Carlo (MC) algorithms based on the use of the resolvent matrix for solving linear algebraic problems. Estimates for the speedup and efficiency of the algorithms are presented. Some numerical examples performed on cluster of workstations using MPI are given. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [1] Monte Carlo numerical treatment of large linear algebra problems
    Dimov, Ivan
    Alexandrov, Vassil
    Papancheva, Rumyana
    Weihrauch, Christian
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 747 - +
  • [2] A relaxed Monte Carlo method for computational linear algebra problems
    Tan, CJK
    [J]. PDPTA'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, 2001, : 1561 - 1567
  • [3] Quasi-Monte Carlo methods for some linear algebra problems
    Karaivanova, A
    Mascagni, M
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1754 - 1757
  • [4] Some parallel Monte Carlo algorithms
    Mikhailov, GA
    [J]. PARALLEL COMPUTING TECHNOLOGIES, 2001, 2127 : 469 - 479
  • [5] ALGORITHMS OF PARALLEL COMPUTATIONS FOR LINEAR ALGEBRA PROBLEMS WITH IRREGULARLY STRUCTURED MATRICES
    Khimich, A. N.
    Popov, A. V.
    Polyanko, V. V.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2011, 47 (06) : 973 - 985
  • [6] Parallel output-sensitive algorithms for combinatorial and linear algebra problems
    Reif, JH
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 62 (03) : 398 - 412
  • [7] On Monte Carlo Hybrid Methods for Linear Algebra
    Davila, Diego
    Alexandrov, Vassil
    Esquivel-Flores, Oscar A.
    [J]. PROCEEDINGS OF SCALA 2016: 7TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE-SCALE SYSTEMS, 2016, : 81 - 88
  • [8] Models of systolic processors for the solution of problems of linear algebra by the Monte-Carlo method
    Bakhanovich, S.V.
    Likhoded, N.L.
    [J]. Engineering Simulation, 2000, 17 (06): : 859 - 876
  • [9] Parallel Monte Carlo algorithms for information retrieval
    Alexandrov, VN
    Dimov, IT
    Karaivanova, A
    Tan, CJK
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 289 - 295
  • [10] PARALLEL ALGORITHMS FOR QUANTUM MONTE-CARLO
    HAMMOND, BL
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 132 - COMP