Parallel output-sensitive algorithms for combinatorial and linear algebra problems

被引:0
|
作者
Reif, JH [1 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
关键词
parallel algorithms; randomized algorithms; linear systems; maximum linear independent subset; matrix rank; structured matrices; Toeplitz matrices; displacement rank; output sensitive; bipartite matching;
D O I
10.1006/jcss.2000.1740
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives output-sensitive parallel algorithms whose performance depends on the output size and are significantly more efficient tall previous algorithms for problems with sufficiently small output size. Inputs are n x n matrices over a fixed ground field. Let P(n) and M(n) be the PRAM processor bounds for O(log n) time multiplication of two degree n polynomials, and n x n matrices, respectively. Let T(n) be the time bounds, using M(n) processors, for testing if an n x n matrix is nonsingular, and if so, computing its inverse. We compute the rank R of a matrix in randomized parallel time O(log n + T (R) log R) using nP(n) + M(R) processors (P(n) + RP(R) processors for constant displacement rank matrices, e.g., Toeplitz matrices). We find a maximum linearly independent subset (MLIS) of an n-set of n-dimensional vectors in time O(T(n)log n) using M(n) randomized processors and we also give output-sensitive algorithms for this problem. Applications include output-sensitive algorithms for finding: (i) a size R maximum matching in an n-vertex graph using time O(T(R) log n) and nP(n)/T(R) + RM(R) processors, and (ii) a maximum matching in an n-vertex bipartite graph, with vertex subsets of sizes n(1) less than or equal to n(2), using time O(T(n(1)) log n) and nP(n)/T(n(1)) + n(1) M(n(1)) processors. (C) 2001 Academic Press.
引用
下载
收藏
页码:398 / 412
页数:15
相关论文
共 50 条
  • [1] Output-Sensitive Algorithms for Enumerating the Extreme Nondominated Points of Multiobjective Combinatorial Optimization Problems
    Boekler, Fritz
    Mutzel, Petra
    ALGORITHMS - ESA 2015, 2015, 9294 : 288 - 299
  • [2] On Join Sampling and the Hardness of Combinatorial Output-Sensitive Join Algorithms
    Deng, Shiyuan
    Lu, Shangqi
    Tao, Yufei
    PROCEEDINGS OF THE 42ND ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, PODS 2023, 2023, : 99 - 111
  • [3] Output-sensitive algorithms for Tukey depth and related problems
    Bremner, David
    Chen, Dan
    Iacono, John
    Langerman, Stefan
    Morin, Pat
    STATISTICS AND COMPUTING, 2008, 18 (03) : 259 - 266
  • [4] Output-sensitive algorithms for Tukey depth and related problems
    David Bremner
    Dan Chen
    John Iacono
    Stefan Langerman
    Pat Morin
    Statistics and Computing, 2008, 18
  • [5] Optimal, output-sensitive algorithms for constructing planar hulls in parallel
    Gupta, N
    Sen, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (03): : 151 - 166
  • [7] Competing output-sensitive frame algorithms
    Dula, J. H.
    Lopez, F. J.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2012, 45 (04): : 186 - 197
  • [8] Reactive Synthesis: Towards Output-Sensitive Algorithms
    Finkbeiner, Bernd
    Klein, Felix
    DEPENDABLE SOFTWARE SYSTEMS ENGINEERING, 2017, 50 : 25 - 43
  • [9] Output-Sensitive Parallel Algorithm for Polygon Clipping
    Puri, Satish
    Prasad, Sushil K.
    2014 43RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2014, : 241 - 250
  • [10] Output-sensitive Skyline Algorithms in External Memory
    Hu, Xiaocheng
    Sheng, Cheng
    Tao, Yufei
    Yang, Yi
    Zhou, Shuigeng
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 887 - 900