Parallel output-sensitive algorithms for combinatorial and linear algebra problems

被引:0
|
作者
Reif, JH [1 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
关键词
parallel algorithms; randomized algorithms; linear systems; maximum linear independent subset; matrix rank; structured matrices; Toeplitz matrices; displacement rank; output sensitive; bipartite matching;
D O I
10.1006/jcss.2000.1740
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives output-sensitive parallel algorithms whose performance depends on the output size and are significantly more efficient tall previous algorithms for problems with sufficiently small output size. Inputs are n x n matrices over a fixed ground field. Let P(n) and M(n) be the PRAM processor bounds for O(log n) time multiplication of two degree n polynomials, and n x n matrices, respectively. Let T(n) be the time bounds, using M(n) processors, for testing if an n x n matrix is nonsingular, and if so, computing its inverse. We compute the rank R of a matrix in randomized parallel time O(log n + T (R) log R) using nP(n) + M(R) processors (P(n) + RP(R) processors for constant displacement rank matrices, e.g., Toeplitz matrices). We find a maximum linearly independent subset (MLIS) of an n-set of n-dimensional vectors in time O(T(n)log n) using M(n) randomized processors and we also give output-sensitive algorithms for this problem. Applications include output-sensitive algorithms for finding: (i) a size R maximum matching in an n-vertex graph using time O(T(R) log n) and nP(n)/T(R) + RM(R) processors, and (ii) a maximum matching in an n-vertex bipartite graph, with vertex subsets of sizes n(1) less than or equal to n(2), using time O(T(n(1)) log n) and nP(n)/T(n(1)) + n(1) M(n(1)) processors. (C) 2001 Academic Press.
引用
收藏
页码:398 / 412
页数:15
相关论文
共 50 条
  • [31] Output-Sensitive Algorithms for Enumerating Minimal Transversals for Some Geometric Hypergraphs
    Elbassioni, Khaled
    Makino, Kazuhisa
    Rauf, Imran
    ALGORITHMS - ESA 2009, PROCEEDINGS, 2009, 5757 : 143 - +
  • [32] Output-Sensitive Algorithms for Computing Nearest-Neighbour Decision Boundaries
    David Bremner
    Erik Demaine
    Jeff Erickson
    John Iacono
    Stefan Langerman
    Pat Morin
    Godfried Toussaint
    Discrete & Computational Geometry, 2005, 33 : 593 - 604
  • [33] Output-sensitive volume tracking
    Jiang, Lian
    Li, XiaoLin
    VISUALIZATION AND DATA ANALYSIS 2006, 2006, 6060
  • [34] Output-Sensitive Algorithms for Finding the Nested Common Intervals of Two General Sequences
    Wang, Biing-Feng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (02) : 548 - 559
  • [35] An Output-Sensitive Algorithm for Persistent Homology
    Chen, Chao
    Kerber, Michael
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 207 - 215
  • [36] OUTPUT-SENSITIVE HIDDEN SURFACE REMOVAL
    OVERMARS, M
    SHARIR, M
    30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 598 - 603
  • [37] Output-sensitive reporting of disjoint paths
    Di, Battista, G.
    Tamassia, R.
    Vismara, L.
    Algorithmica (New York), 1999, 23 (04): : 302 - 340
  • [38] Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems
    Chan, T. M.
    1996, (16):
  • [39] SURVEY OF PARALLEL ALGORITHMS IN NUMERICAL LINEAR ALGEBRA
    HELLER, D
    SIAM REVIEW, 1978, 20 (04) : 740 - 777
  • [40] PARALLEL ALGORITHMS FOR DENSE LINEAR ALGEBRA COMPUTATIONS
    GALLIVAN, KA
    PLEMMONS, RJ
    SAMEH, AH
    SIAM REVIEW, 1990, 32 (01) : 54 - 135