Approximate Message Passing Algorithm for Nonconvex Regularization

被引:4
|
作者
Zhang, Hui [1 ]
Zhang, Hai [1 ,2 ,3 ]
Liang, Yong [1 ,2 ]
Yang, Zi-Yi [1 ]
Ren, Yanqiong [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau 519020, Peoples R China
[2] Macau Univ Sci & Technol, State Key Lab Qual Res Chinese Med, Macau 519020, Peoples R China
[3] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Approximate message passing algorithm; iterative thresholding algorithm; nonconvex regularization; sparsity; variable selection; UNCERTAINTY PRINCIPLES; SELECTION; REPRESENTATION;
D O I
10.1109/ACCESS.2019.2891121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the sparse signal reconstruction with nonconvex regularization, mainly focusing on two popular nonconvex regularization methods, minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD). An approximate message passing (AMP) algorithm is an effective method for signal reconstruction. Based on the AMP algorithm, we propose an improved MCP iterative thresholding algorithm and an improved SCAD iterative thresholding algorithm. Furthermore, we analyze the convergence of the new algorithms and provide a series of experiments to assess the performance of the new algorithms. The experiments show that the new algorithms based on AMP have stronger reconstruction capabilities, higher phase transition for sparse signal reconstruction, and better variable selection ability than the original MCP iterative thresholding algorithm and the original SCAD iterative thresholding algorithm.
引用
收藏
页码:9080 / 9090
页数:11
相关论文
共 50 条
  • [31] An Approximate Message Passing Framework for Side Information
    Ma, Anna
    Zhou, You
    Rush, Cynthia
    Baron, Dror
    Needell, Deanna
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (07) : 1875 - 1888
  • [32] Speech Enhancement Based on Approximate Message Passing
    Chao Li
    Ting Jiang
    Sheng Wu
    [J]. China Communications, 2020, 17 (08) : 187 - 198
  • [33] On the Convergence of Approximate Message Passing With Arbitrary Matrices
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    Sarkar, Subrata
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5339 - 5351
  • [34] Speech Enhancement Based on Approximate Message Passing
    Li, Chao
    Jiang, Ting
    Wu, Sheng
    [J]. CHINA COMMUNICATIONS, 2020, 17 (08) : 187 - 198
  • [35] Conditional Approximate Message Passing with Side Information
    Baron, Dror
    Ma, Anna
    Needell, Deanna
    Rush, Cynthia
    Woolf, Tina
    [J]. 2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 430 - 434
  • [36] Nonparametric Maximum Likelihood Approximate Message Passing
    Feng, Long
    Ma, Ruijun
    Dicker, Lee H.
    [J]. 2017 51ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2017,
  • [37] Dynamics of Damped Approximate Message Passing Algorithms
    Mimura, Kazushi
    Takeuchi, Jun'ichi
    [J]. 2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 564 - 568
  • [38] An Expectation Propagation Perspective on Approximate Message Passing
    Meng, Xiangming
    Wu, Sheng
    Kuang, Linling
    Lu, Jianhua
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (08) : 1194 - 1197
  • [39] On the Convergence of Approximate Message Passing with Arbitrary Matrices
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 236 - 240
  • [40] Parametric Bilinear Generalized Approximate Message Passing
    Parker, Jason T.
    Schniter, Philip
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 795 - 808