Approximate Message Passing Algorithm for Nonconvex Regularization

被引:4
|
作者
Zhang, Hui [1 ]
Zhang, Hai [1 ,2 ,3 ]
Liang, Yong [1 ,2 ]
Yang, Zi-Yi [1 ]
Ren, Yanqiong [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau 519020, Peoples R China
[2] Macau Univ Sci & Technol, State Key Lab Qual Res Chinese Med, Macau 519020, Peoples R China
[3] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Approximate message passing algorithm; iterative thresholding algorithm; nonconvex regularization; sparsity; variable selection; UNCERTAINTY PRINCIPLES; SELECTION; REPRESENTATION;
D O I
10.1109/ACCESS.2019.2891121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the sparse signal reconstruction with nonconvex regularization, mainly focusing on two popular nonconvex regularization methods, minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD). An approximate message passing (AMP) algorithm is an effective method for signal reconstruction. Based on the AMP algorithm, we propose an improved MCP iterative thresholding algorithm and an improved SCAD iterative thresholding algorithm. Furthermore, we analyze the convergence of the new algorithms and provide a series of experiments to assess the performance of the new algorithms. The experiments show that the new algorithms based on AMP have stronger reconstruction capabilities, higher phase transition for sparse signal reconstruction, and better variable selection ability than the original MCP iterative thresholding algorithm and the original SCAD iterative thresholding algorithm.
引用
收藏
页码:9080 / 9090
页数:11
相关论文
共 50 条
  • [1] Approximate Message Passing Algorithm for Nonconvex Regularization
    Zhang, Hai
    Ma, Yan
    Zhang, Hui
    Wang, Puyu
    Wang, Shcnghan
    Meng, Wenhui
    [J]. 2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1615 - 1620
  • [2] UAMPnet: Unrolled approximate message passing network for nonconvex regularization
    Zhang, Hui
    Li, Shoujiang
    Liang, Yong
    Zhang, Hai
    Du, Mengmeng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [3] Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis
    Sakata, Ayaka
    Xu, Yingying
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [4] Approximate message-passing inference algorithm
    Jung, Kyomin
    Shah, Devavrat
    [J]. 2007 IEEE INFORMATION THEORY WORKSHOP, VOLS 1 AND 2, 2007, : 224 - +
  • [5] VLSI Architecture for Enhanced Approximate Message Passing Algorithm
    Batta, Kota Naga Srinivasaro
    Chakrabarti, Indrajit
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (09) : 3253 - 3267
  • [6] An Approximate Message Passing Algorithm for Robust Face Recognition
    Zhou, Guangyu
    Dai, Wei
    [J]. 2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1262 - 1266
  • [7] A Matching Pursuit Generalized Approximate Message Passing Algorithm
    Luo, Yongjie
    Wan, Qun
    Gui, Guan
    Adachi, Fumiyuki
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12) : 2723 - 2727
  • [8] Approximate Message Passing Algorithm for Complex Separable Compressed Imaging
    Hirabayashi, Akira
    Sugimoto, Jumpei
    Mimura, Kazushi
    [J]. 2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,
  • [9] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6664 - 6684
  • [10] Memory Approximate Message Passing
    Liu, Lei
    Huang, Shunqi
    Kurkoski, Brian M.
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1379 - 1384