Quantum criticality in many-body parafermion chains

被引:1
|
作者
Lahtinen, Ville [1 ]
Mansson, Teresia [2 ]
Ardonne, Eddy [3 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Royal Inst Technol KTH, Sch Engn Sci, Dept Theoret Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden
[3] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden
来源
SCIPOST PHYSICS CORE | 2021年 / 4卷 / 02期
基金
瑞典研究理事会;
关键词
INVARIANT PARTITION-FUNCTIONS; MAJORANA FERMIONS; SPIN-CHAIN; SYMMETRY; SPECTRUM; MODEL;
D O I
10.21468/SciPostPhysCore.4.2.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct local generalizations of 3-state Potts models with exotic critical points. We analytically show that these are described by non-diagonal modular invariant partition functions of products of Z(3) parafermion or u (1)(6) conformal field theories (CFTs). These correspond either to non-trivial permutation invariants or block diagonal invariants, that one can understand in terms of anyon condensation. In terms of lattice parafermion operators, the constructed models correspond to parafermion chains with many-body terms. Our construction is based on how the partition function of a CFT depends on symmetry sectors and boundary conditions. This enables to write the partition function corresponding to one modular invariant as a linear combination of another over different sectors and boundary conditions, which translates to a general recipe how to write down a microscopic model, tuned to criticality. We show that the scheme can also be extended to construct critical generalizations of k-state clock type models.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [42] Many-body quantum interference on hypercubes
    Dittel, Christoph
    Keil, Robert
    Weihs, Gregor
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (01):
  • [43] Quantum dots and the many-body problem
    Weidenmüller, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1389 - 1403
  • [44] Quantum computing with and for many-body physics
    Thomas Ayral
    Pauline Besserve
    Denis Lacroix
    Edgar Andres Ruiz Guzman
    The European Physical Journal A, 59
  • [45] Many-Body Delocalization as a Quantum Avalanche
    Thiery, Thimothee
    Huveneers, Francois
    Mueller, Markus
    De Roeck, Wojciech
    PHYSICAL REVIEW LETTERS, 2018, 121 (14)
  • [46] Quantum Many-Body Topology of Quasicrystals
    Else, Dominic, V
    Huang, Sheng-Jie
    Prem, Abhinav
    Gromov, Andrey
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [47] Quantum revivals and many-body localization
    Vasseur, R.
    Parameswaran, S. A.
    Moore, J. E.
    PHYSICAL REVIEW B, 2015, 91 (14)
  • [48] Modular Many-Body Quantum Sensors
    Mukhopadhyay, Chiranjib
    Bayat, Abolfazl
    PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [49] Many-body localization and quantum thermalization
    Altman, Ehud
    NATURE PHYSICS, 2018, 14 (10) : 979 - 983
  • [50] Many-body effects in quantum metrology
    Czajkowski, Jan
    Pawlowski, Krzysztof
    Demkowicz-Dobrzanski, Rafal
    NEW JOURNAL OF PHYSICS, 2019, 21