Precipitation Retrieval from Fengyun-3D Microwave Humidity and Temperature Sounder Data Using Machine Learning

被引:4
|
作者
Liu, Kangwen [1 ,2 ]
He, Jieying [1 ]
Chen, Haonan [3 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, Key Lab Microwave Remote Sensing, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
基金
美国海洋和大气管理局; 国家重点研发计划;
关键词
FY-3D satellite; MWHTS; passive microwave; machine learning; precipitation retrieval; linear combinations; PASSIVE MICROWAVE; SYSTEM; ASSIMILATION; VALIDATION; ALGORITHMS; MIRS;
D O I
10.3390/rs14040848
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As an important component of the Earth system, precipitation plays a vital role in regional and global water cycles. Based on Microwave Humidity and Temperature Sounder (MWHTS) onboard FY-3D satellite, four machine learning models, random forest regression (RFR), support vector machine (SVM), multilayer perceptron (MLP), and gradient boosting regression tree (GBRT), are implemented to retrieve precipitation rate, and verified with Integrated Multi-satellite Retrievals for GPM (IMERG). This paper determines the optimal hyperparameters of the machine models and proposes three linear combinations of MWHTS channels (183.31 & PLUSMN; 1.0-183.31 & PLUSMN; 3.0 GHz, 183.31 & PLUSMN; 1.0-183.31 & PLUSMN; 7.0 GHz, and 183.31 & PLUSMN; 3.0-183.31 & PLUSMN; 7.0 GHz), which can better characterize precipitation of different intensities. With the inclusion of three linear combinations, the performances of all four machine learning models are significantly improved. It is concluded that the RFR and GBRT have the best retrieval accuracy. Over ocean, the MSE, MAE, and R-2 values of precipitation estimates using RFR are 1.75 mm/h, 0.44 mm/h, and 0.80, respectively, and are 1.80 mm/h, 0.45 mm/h, and 0.78 for GBRT. Simultaneously, this paper analyzes the retrieval results from the perspective of the different rain rates and temporal matching difference between MWHTS and IMERG data. The RFR and GBRT also maintain the best retrieval accuracy under the condition of Gaussian noise, indicating the relatively strong robustness and antinoise performance of ensemble learning models for precipitation retrieval.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Fengyun-3D/MERSI-II Cloud Thermodynamic Phase Determination Using a Machine-Learning Approach
    Zhao, Dexin
    Zhu, Lin
    Sun, Hongfu
    Li, Jun
    Wang, Weishi
    REMOTE SENSING, 2021, 13 (12)
  • [32] Estimation of sea surface temperature in the Arctic based on Fengyun-3D/MERSI II data
    Xiaohui Sun
    Lei Guan
    Shuting Lu
    Intelligent Marine Technology and Systems, 3 (1):
  • [33] VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA
    Han, Xiuzhen
    Weng, Fuzhong
    Han, Yang
    Huang, He
    Li, Shengqi
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4943 - 4946
  • [34] Uncertainty in Fengyun-3C Microwave Humidity Sounder Measurements at 118 GHz With Respect to Simulations From GPS RO Data
    Qin, Zhengkun
    Zou, Xiaolei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 6907 - 6918
  • [35] A Physics-Based Method for Retrieving Land Surface Emissivities from FengYun-3D Microwave Radiation Imager Data
    Zhou, Fangcheng
    Han, Xiuzhen
    Tang, Shihao
    Cao, Guangzhen
    Song, Xiaoning
    Wang, Binqian
    REMOTE SENSING, 2024, 16 (02)
  • [36] Estimation of Terrestrial Net Primary Productivity in China from Fengyun-3D Satellite Data
    Liu, Yonghong
    Han, Xiuzhen
    Weng, Fuzhong
    Xu, Yongming
    Zhang, Yeping
    Tang, Shihao
    JOURNAL OF METEOROLOGICAL RESEARCH, 2022, 36 (03) : 401 - 416
  • [37] Estimation of Terrestrial Net Primary Productivity in China from Fengyun-3D Satellite Data
    Yonghong LIU
    Xiuzhen HAN
    Fuzhong WENG
    Yongming XU
    Yeping ZHANG
    Shihao TANG
    JournalofMeteorologicalResearch, 2022, 36 (03) : 401 - 416
  • [38] Estimation of Terrestrial Net Primary Productivity in China from Fengyun-3D Satellite Data
    Yonghong Liu
    Xiuzhen Han
    Fuzhong Weng
    Yongming Xu
    Yeping Zhang
    Shihao Tang
    Journal of Meteorological Research, 2022, 36 : 401 - 416
  • [39] Verification of Fengyun-3D MWTS and MWHS Calibration Accuracy Using GPS Radio Occultation Data
    Xueyan HOU
    Yang HAN
    Xiuqing HU
    Fuzhong WENG
    Journal of Meteorological Research, 2019, 33 (04) : 695 - 704
  • [40] Verification of Fengyun-3D MWTS and MWHS Calibration Accuracy Using GPS Radio Occultation Data
    Xueyan Hou
    Yang Han
    Xiuqing Hu
    Fuzhong Weng
    Journal of Meteorological Research, 2019, 33 : 695 - 704