Data Augmentation using non-rigid CPD Registration for 3D Facial Expression Recognition

被引:0
|
作者
Trimech, Imen Hamrouni [1 ]
Maalej, Ahmed [1 ,2 ]
Ben Amara, Najoua Essoukri [1 ]
机构
[1] Univ Sousse, Ecole Natl Ingenieurs Sousse, LATIS, Sousse 4023, Tunisia
[2] Univ Kairouan, Inst Super Math Appl & Informat Kairouan, Kairouan 3100, Tunisia
关键词
3D Facial Expression Recognition; CPD non-rigid registration; Data Augmentation; DNN;
D O I
10.1109/ssd.2019.8893278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
3D Facial Expression Recognition (FER) is an active research topic due to its multi-fields human machine applications. We expose in this paper a new approach for Data Augmentation (DA) in order to improve 3D FER using Deep Neural Networks (DNN). Our main contribution consists in using the Coherent Point Drift (CPD) non-rigid registration to generate additional 3D facial data conveying various expressions mainly the prototypical expressions: Happiness, Sadness, Fear, Surprise, Disgust, and Anger. We start by choosing a set of different references defined by arbitrarily selected neutral faces. We apply then the CPD non-rigid registration between each selected neutral face and each 3D facial model conveying various expressions from the whole BU-3DFE database. Thus, we augment the dataset by a factor equal to the used references. Afterwards, we estimate the 3D elastic deformation between the reference (3D neutral face) and the target (3D face with expression) in order to generate consequently various 3D expressions by switching the reference and the target within the registration process. Afterwards, we gather the produced 3D expressions to increase the size of our dataset. Finally, we exploit a DNN architecture to evaluate our proposed DA method. The used DA is effective and increases our DNN performance. Experimental results operated on the whole BU-3DFE database shows promising results reaching 94.88%.
引用
收藏
页码:164 / 169
页数:6
相关论文
共 50 条
  • [21] A Non-Rigid Registration Method for Medical Volume Data Using 3D Phase-Only Correlation
    Tajima, Yuichiro
    Ito, Koichi
    Aoki, Takafumi
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 93 - 96
  • [22] Non-rigid ICP and 3D models for face recognition
    Voronin, Sergei
    Kober, Vitaly
    Makovetskii, Artyom
    Voronin, Aleksei
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XLII, 2019, 11137
  • [23] An improved 3D shape context registration method for non-rigid surface registration
    Xiao, Di
    Zahra, David
    Bourgeat, Pierrick
    Berghofer, Paula
    Tamayo, Oscar Acosta
    Wimberley, Catriona
    Gregoire, Marie Claude
    Salvado, Olivier
    [J]. MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [24] Fully automatic cardiac motion estimation in 3D echocardiography using non-rigid registration
    Wu, H. S.
    Wang, L. S.
    Xiong, H. J.
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 163 : S25 - S25
  • [25] Tool path correction for robotic deburring using local non-rigid 3D registration
    Peng, Peiyang
    Wu, Chengxing
    Yang, Jixiang
    Ding, Han
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 89
  • [26] Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching
    Machado, Ines
    Toews, Matthew
    Luo, Jie
    Unadkat, Prashin
    Essayed, Walid
    George, Elizabeth
    Teodoro, Pedro
    Carvalho, Herculano
    Martins, Jorge
    Golland, Polina
    Pieper, Steve
    Frisken, Sarah
    Golby, Alexandra
    Wells, William, III
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (10) : 1525 - 1538
  • [27] Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching
    Inês Machado
    Matthew Toews
    Jie Luo
    Prashin Unadkat
    Walid Essayed
    Elizabeth George
    Pedro Teodoro
    Herculano Carvalho
    Jorge Martins
    Polina Golland
    Steve Pieper
    Sarah Frisken
    Alexandra Golby
    William Wells
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13 : 1525 - 1538
  • [28] Non-rigid Registration of 3D Ultrasound Images Using Model-based Segmentation
    Matinfar, Babka
    Zagrochev, Lyubomir
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 323 - 328
  • [29] Non-rigid registration of 2D manifolds in 3D Euclidian space
    Darkner, Sune
    Vester-Christensen, Martin
    Paulsen, Rasmus R.
    Larsen, Rasmus
    [J]. MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [30] Non-rigid registration of 3D point clouds under isometric deformation
    Ge, Xuming
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 121 : 192 - 202