Multiplicity of the second-largest eigenvalue of a planar graph

被引:3
|
作者
Chen, Guantao [1 ]
Hao, Yanli [1 ,2 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China
基金
美国国家科学基金会;
关键词
adjacency matrix; eigenvalue; outerplanar graph; planar graph; tutte decomposition;
D O I
10.1002/jgt.22708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multiplicity of the second-largest eigenvalue of the adjacency matrix A ( G ) of a connected graph G, denoted by m ( lambda 2 , G ), is the number of times of the second-largest eigenvalue of A ( G ) appears. In 2019, Jiang, Tidor, Yao, Zhang, and Zhao gave an upper bound on m ( lambda 2 , G ) for graphs G with bounded degrees, and applied it to solve a longstanding problem on equiangular lines. In this paper, we show that if G is a 3-connected planar graph or 2-connected outerplanar graph, then m ( lambda 2 , G ) <= delta ( G ), where delta ( G ) is the minimum degree of G. We further prove that if G is a connected planar graph, then m ( lambda 2 , G ) <= Delta ( G ); if G is a connected outerplanar graph, then m ( lambda 2 , G ) <= max { 2 , Delta ( G ) - 1 }, where Delta ( G ) is the maximum degree of G. Moreover, these two upper bounds for connected planar graphs and outerplanar graphs, respectively, are best possible.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 50 条
  • [41] On the second largest eigenvalue of line graphs
    Petrovic, M
    Milekic, B
    [J]. JOURNAL OF GRAPH THEORY, 1998, 27 (02) : 61 - 66
  • [42] Graph transformations which preserve the multiplicity of an eigenvalue
    Yeh, YN
    Gutman, I
    Fu, CM
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 67 (1-3) : 221 - 228
  • [43] On the multiplicity of the least signless Laplacian eigenvalue of a graph
    Tian, Fenglei
    Guo, Shu-Guang
    Wong, Dein
    [J]. DISCRETE MATHEMATICS, 2022, 345 (09)
  • [44] Some bounds for the largest eigenvalue of a signed graph
    Stanic, Zoran
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (02): : 183 - 189
  • [45] UPPER BOUNDS FOR THE LARGEST EIGENVALUE OF A BIPARTITE GRAPH
    Merikoski, Jorma K.
    Kumar, Ravinder
    Rajput, Ram Asrey
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 168 - 176
  • [46] On the largest eigenvalue of the distance matrix of a connected graph
    Zhou, Bo
    Trinajstic, Nenad
    [J]. CHEMICAL PHYSICS LETTERS, 2007, 447 (4-6) : 384 - 387
  • [47] On the largest eigenvalue of the distance matrix of a bipartite graph
    Das, Kinkar Ch.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 667 - 672
  • [48] Note on the product of the largest and the smallest eigenvalue of a graph
    Abiad, Aida
    Dalfo, Cristina
    Fiol, Miquel Angel
    [J]. SPECIAL MATRICES, 2024, 12 (01):
  • [49] On the largest eigenvalue of a mixed graph with partial orientation
    Yuan, Bo-Jun
    Wang, Yi
    Fan, Yi-Zheng
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 627 : 150 - 161
  • [50] ON THE κ-th LARGEST EIGENVALUE OF THE LAPLACIAN MATRIX OF A GRAPH
    张晓东
    李炯生
    [J]. Acta Mathematicae Applicatae Sinica, 2001, (02) : 183 - 190