Study for Aortic Atherosclerotic Plaque Classification Using Deep Learning

被引:0
|
作者
Cho, You Hee [1 ]
Bang, Hye Jin [1 ]
Park, Jong Won [1 ]
Cho, Jung Sun [2 ]
机构
[1] Korea Inst Machinery & Mat, Dept Reliabil Assessment, Daejeon, South Korea
[2] Catholic Univ Korea, Daejeon St Marys Hosp, Daejeon, South Korea
关键词
Aorta; Plaque Classification; Plaque Area Prediction; Autoencoder; U-Net; STROKE; MORPHOLOGY;
D O I
10.3795/KSME-A.2022.46.2.187
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Stroke and heart disease, which account for a high percentage of the causes of death amongst the elderly population, can occur suddenly leading to death. Hence, early diagnoses and continuous management are required. High-risk diseases should be diagnosed through medical personnel using established medical techniques. However, it is time consuming to decide on a diagnosis or the opinion may differ depending on the medical professional. This study aims to shorten the diagnosis period and provide high accuracy diagnoses by establishing the semi-supervised convolution autoencoder and the U-Net models that can classify aortic atherosclerotic plaque conditions and predict the primary locations for stroke occurrence.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [31] Rosuvastatin may stabilize atherosclerotic aortic plaque: Transesophageal echocardiographic study in the EPISTEME trial
    Ueno, Yuji
    Yamashiro, Kazuo
    Tanaka, Yasutaka
    Watanabe, Masao
    Miyamoto, Nobukazu
    Shimada, Yoshiaki
    Kuroki, Takuma
    Tanaka, Ryota
    Miyauchi, Katsumi
    Daida, Hiroyuki
    Hattori, Nobutaka
    Urabe, Takao
    ATHEROSCLEROSIS, 2015, 239 (02) : 476 - 482
  • [32] Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI
    Jiang, Yuanliang
    Zhu, Chengcheng
    Peng, Wenjia
    Degnan, Andrew J.
    Chen, Luguang
    Wang, Xinrui
    Liu, Qi
    Wang, Yang
    Xiang, Zhenzhen
    Teng, Zhongzhao
    Saloner, David
    Lu, Jianping
    ATHEROSCLEROSIS, 2016, 249 : 10 - 16
  • [33] Race classification using deep learning
    Khan, Khalil
    Khan, Rehan Ullah
    Ali, Jehad
    Uddin, Irfan
    Khan, Sahib
    Roh, Byeong-Hee
    Computers, Materials and Continua, 2021, 68 (03): : 3483 - 3498
  • [34] Classification of Legislations using Deep Learning
    Pudaruth, Sameerchand
    Soyjaudah, Sunjiv
    Gunputh, Rajendra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (05) : 651 - 662
  • [35] MALWARE CLASSIFICATION USING DEEP LEARNING
    Lo, Cheng-Hsiang
    Liu, Ta-Che
    Liu, I-Hsien
    Li, Jung-Shian
    Liu, Chuan-Gang
    Li, Chu-Fen
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 126 - 129
  • [36] Signal Classification Using Deep Learning
    Nishizaki, Hiromitsu
    Makino, Koji
    2019 IEEE INTERNATIONAL CONFERENCE ON SENSORS AND NANOTECHNOLOGY (SN), 2019, : 81 - 84
  • [37] Using Deep Learning for Trajectory Classification
    de Freitas, Nicksson C. A.
    Coelho da Silva, Ticiana L.
    Fernandes de Macedo, Jose Antonio
    Melo Junior, Leopoldo
    Cordeiro, Matheus Gomes
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 664 - 671
  • [38] Acoustic Classification using Deep Learning
    Aslam, Muhammad Ahsan
    Sarwar, Muhammad Umer
    Hanif, Muhammad Kashif
    Talib, Ramzan
    Khalid, Usama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (08) : 153 - 159
  • [39] Melanoma Classification Using Deep Learning
    Mousa, Yehia
    Taha, Radwa
    Kaur, Ranpreet
    Afifi, Shereen
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2023, 2024, 14403 : 259 - 272
  • [40] Race Classification Using Deep Learning
    Khan, Khalil
    Khan, Rehan Ullah
    Ali, Jehad
    Uddin, Irfan
    Khan, Sahib
    Roh, Byeong-hee
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 3483 - 3498