Multiple Feature Hashing Learning for Large-Scale Remote Sensing Image Retrieval

被引:35
|
作者
Ye, Dongjie [1 ]
Li, Yansheng [1 ]
Tao, Chao [2 ]
Xie, Xunwei [1 ]
Wang, Xiang [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[2] Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
multiple feature hashing learning; large-scale remote sensing image retrieval; remote sensing big data management; BIG DATA;
D O I
10.3390/ijgi6110364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driven by the urgent demand of remote sensing big data management and knowledge discovery, large-scale remote sensing image retrieval (LSRSIR) has attracted more and more attention. As is well known, hashing learning has played an important role in coping with big data mining problems. In the literature, several hashing learning methods have been proposed to address LSRSIR. Until now, existing LSRSIR methods take only one type of feature descriptor as the input of hashing learning methods and ignore the complementary effects of multiple features, which may represent remote sensing images from different aspects. Different from the existing LSRSIR methods, this paper proposes a flexible multiple-feature hashing learning framework for LSRSIR, which takes multiple complementary features as the input and learns the hybrid feature mapping function, which projects multiple features of the remote sensing image to the low-dimensional binary (i.e., compact) feature representation. Furthermore, the compact feature representations can be directly utilized in LSRSIR with the aid of the hamming distance metric. In order to show the superiority of the proposed multiple feature hashing learning method, we compare the proposed approach with the existing methods on two publicly available large-scale remote sensing image datasets. Extensive experiments demonstrate that the proposed approach can significantly outperform the state-of-the-art approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Deep Multi-Scale Attention Hashing Network for Large-Scale Image Retrieval
    Feng H.
    Wang N.
    Tang J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (04): : 35 - 45
  • [42] Towards Large-Scale Histopathological Image Analysis: Hashing-Based Image Retrieval
    Zhang, Xiaofan
    Liu, Wei
    Dundar, Murat
    Badve, Sunil
    Zhang, Shaoting
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (02) : 496 - 506
  • [43] Hashing-Based Scalable Remote Sensing Image Search and Retrieval in Large Archives
    Demir, Beguem
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (02): : 892 - 904
  • [44] Probability Ordinal-Preserving Semantic Hashing for Large-Scale Image Retrieval
    Zhang, Zheng
    Zhu, Xiaofeng
    Lu, Guangming
    Zhang, Yudong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (03)
  • [46] Deep Supervised Hashing for Multi-Label and Large-Scale Image Retrieval
    Wu, Dayan
    Lin, Zheng
    Li, Bo
    Ye, Mingzhen
    Wang, Weiping
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 155 - 163
  • [47] Discriminative dual-stream deep hashing for large-scale image retrieval
    Ding, Yujuan
    Wong, Wai Keung
    Lai, Zhihui
    Zhang, Zheng
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [48] Deep Neighborhood Structure-Preserving Hashing for Large-Scale Image Retrieval
    Qin, Qibing
    Xie, Kezhen
    Zhang, Wenfeng
    Wang, Chengduan
    Huang, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1881 - 1893
  • [49] Self-Paced Relational Contrastive Hashing for Large-Scale Image Retrieval
    Lu, Zhengyun
    Jin, Lu
    Li, Zechao
    Tang, Jinhui
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3392 - 3404
  • [50] Rapid Feature Retrieval Method in Large-Scale Image Database
    Gao, Fei
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (07) : 1088 - 1092