Long-term tidal evolution of the TRAPPIST-1 system

被引:6
|
作者
Brasser, R. [1 ]
Pichierri, G. [2 ]
Dobos, V [3 ,4 ]
Barr, A. C. [5 ]
机构
[1] MTA Ctr Excellence, Origins Res Inst, Res Ctr Astron & Earth Sci, Konkoly Thege Miklos St 15-17, H-1121 Budapest, Hungary
[2] Max Planck Inst Astron, Koningstuhl 17, D-69117 Heidelberg, Germany
[3] Univ Groningen, Kapteyn Astron Inst, Landleven 12, NL-9747 AD Groningen, Netherlands
[4] MTA ELTE Exoplanet Res Grp, Szent Imre H U 112, H-9700 Szombathely, Hungary
[5] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA
基金
欧洲研究理事会;
关键词
methods: numerical; planets and satellites:: dynamical evolution and stability; planets and satellites: fundamental parameters; planets and satellites: terrestrial planets; PLANETS; DISK; DISSIPATION; STARS;
D O I
10.1093/mnras/stac1907
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ultracool M-dwarf star TRAPPIST-1 is surrounded by seven planets configured in a resonant chain. Transit-timing variations have shown that the planets are caught in multiple three-body resonances and that their orbits are slightly eccentric, probably caused by resonant forcing. The current values of the eccentricities could be a remnant from their formation. Here, we run numerical simulations using fictitious forces of trapping the fully grown planets in resonances as they migrated in the gas disc, followed by numerical simulations detailing their tidal evolution. For a reduced disc scale height h similar to 0.03-0.05, the eccentricities of the planets upon capture in resonance are higher than their current values by factors of a few. We show that the current eccentricities and spacing of planets d to h are natural outcomes of coupled tidal evolution wherein the planets simultaneously damp their eccentricities and separate due to their resonant interaction. We further show that the planets evolve along a set of equilibrium curves in semimajor axis-eccentricity phase space that are defined by the resonances, and that conserve angular momentum. As such, the current 8:5-5:3-(3:2)(2)-4:3-3:2 resonant configuration cannot be reproduced from a primordial (3:2)(4)-4:3-3:2 resonant configuration from tidal dissipation in the planets alone. We use our simulations to constrain the long-term tidal parameters k(2)/Q for planets b to e, which are in the range of 10(-3) to 10(-2), and show that these are mostly consistent with those obtained from interior modelling following reasonable assumptions.
引用
收藏
页码:2373 / 2385
页数:13
相关论文
共 50 条
  • [31] The Role of Tidal Forces in the Long-term Evolution of the Galilean System
    Alessandra Celletti
    Efsevia Karampotsiou
    Christoph Lhotka
    Giuseppe Pucacco
    Mara Volpi
    [J]. Regular and Chaotic Dynamics, 2022, 27 : 381 - 408
  • [32] The Role of Tidal Forces in the Long-term Evolution of the Galilean System
    Celletti, Alessandra
    Karampotsiou, Efsevia
    Lhotka, Christoph
    Pucacco, Giuseppe
    Volpi, Mara
    [J]. REGULAR & CHAOTIC DYNAMICS, 2022, 27 (04): : 381 - 408
  • [33] Evidence for Spin-Orbit Alignment in the TRAPPIST-1 System
    Hirano, Teruyuki
    Gaidos, Eric
    Winn, Joshua N.
    Dai, Fei
    Fukui, Akihiko
    Kuzuhara, Masayuki
    Kotani, Takayuki
    Tamura, Motohide
    Hjorth, Maria
    Albrecht, Simon
    Huber, Daniel
    Bolmont, Emeline
    Harakawa, Hiroki
    Hodapp, Klaus
    Ishizuka, Masato
    Jacobson, Shane
    Konishi, Mihoko
    Kudo, Tomoyuki
    Kurokawa, Takashi
    Nishikawa, Jun
    Omiya, Masashi
    Serizawa, Takuma
    Ueda, Akitoshi
    Weiss, Lauren M.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 890 (02)
  • [34] Frequent Flaring in the TRAPPIST-1 System-Unsuited for Life?
    Vida, K.
    Kovari, Zs.
    Pal, A.
    Olah, K.
    Kriskovics, L.
    [J]. ASTROPHYSICAL JOURNAL, 2017, 841 (02):
  • [35] Possible Bright Starspots on TRAPPIST-1
    Morris, Brett M.
    Agol, Eric
    Davenport, James R. A.
    Hawley, Suzanne L.
    [J]. ASTROPHYSICAL JOURNAL, 2018, 857 (01):
  • [36] Water transport throughout the TRAPPIST-1 system: the role of planetesimals
    Dosovic, Vladimir
    Novakovc, Bojan
    Vukotc, Branislav
    Cirkovic, Milan M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (04) : 4626 - 4637
  • [37] Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line
    Bourrier, V.
    Ehrenreich, D.
    Wheatley, P. J.
    Bolmont, E.
    Gillon, M.
    de Wit, J.
    Burgasser, A. J.
    Jehin, E.
    Queloz, D.
    Triaud, A. H. M. J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2017, 599
  • [38] Constraining the Radio Emission of TRAPPIST-1
    Hughes, A. G.
    Boley, A. C.
    Osten, R. A.
    White, J. A.
    [J]. ASTROPHYSICAL JOURNAL, 2019, 881 (01):
  • [39] Characterisation of the hydrospheres of TRAPPIST-1 planets
    Acuna, Lorena
    Deleuil, Magali
    Mousis, Olivier
    Marcq, Emmanuel
    Levesque, Maeva
    Aguichine, Artyom
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 647
  • [40] Water delivery to the TRAPPIST-1 planets
    Dencs, Z.
    Regalay, Zs.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (02) : 2191 - 2199