Energy-Efficient In-Memory Paging for Smartphones

被引:10
|
作者
Zhong, Kan [1 ,2 ]
Liu, Duo [1 ,2 ]
Liang, Liang [3 ]
Zhu, Xiao [1 ,2 ]
Long, Linbo [1 ,2 ]
Wang, Yi [4 ]
Sha, Edwin Hsing-Mean [1 ,2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China
[4] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Energy; in-memory paging (IMP); nonvolatile memory (NVM); smartphone; swapping; PHASE-CHANGE MEMORY; MAIN MEMORY; PERFORMANCE; MANAGEMENT; LIFETIME;
D O I
10.1109/TCAD.2015.2512904
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Smartphones are becoming increasingly energy-hungry to support feature-rich applications, posing a lot of pressure on battery lifetime and making energy consumption a non-negligible issue. In particular, dynamic random access memory (DRAM)-based main memory subsystem is a major contributor to the energy consumption of mobile devices. In this paper, we propose direct read (DR). Swap, an energy-efficient in-memory paging design to reduce energy consumption in smartphones. In DR. Swap, we adopt emerging energy-efficient nonvolatile memory (NVM) and use it as the swap area. Utilizing NVMs byte-addressability, we propose DR which guarantees zero memory copy for read-only requests when accessing a page in swap area. To better understand the energy consumption of swapping, we build an energy model to analyze the energy consumption of different paging architectures. We evaluate DR. Swap based on the Google Nexus 5 smartphone, experimental results show that our technique can reduce more than 50% energy consumption compared to DRAM backed swapping.
引用
收藏
页码:1577 / 1590
页数:14
相关论文
共 50 条
  • [1] DR. Swap: Energy-Efficient Paging for Smartphones
    Zhong, Kan
    Zhu, Xiao
    Wang, Tianzheng
    Zhang, Dan
    Luo, Xianlu
    Liu, Duo
    Liu, Weichen
    Sha, Edwin H. -M.
    [J]. PROCEEDINGS OF THE 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2014, : 81 - 86
  • [2] Energy-Efficient In-Memory Database Computing
    Lehner, Wolfgang
    [J]. DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 470 - 474
  • [3] Energy-efficient In-Memory Address Calculation
    Yousefzadeh, Amirreza
    Stuijt, Jan
    Hijdra, Martijn
    Liu, Hsiao-Hsuan
    Gebregiorgis, Anteneh
    Singh, Abhairaj
    Hamdioui, Said
    Catthoor, Francky
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2022, 19 (04)
  • [4] In-Memory Computing: Towards Energy-Efficient Artificial Intelligence
    Le Gallo, Manuel
    Sebastian, Abu
    Eleftheriou, Evangelos
    [J]. ERCIM NEWS, 2018, (115): : 44 - 45
  • [5] An Energy-Efficient In-Memory Accelerator for Graph Construction and Updating
    Chen, Mingkai
    Liu, Cheng
    Liang, Shengwen
    He, Lei
    Wang, Ying
    Zhang, Lei
    Li, Huawei
    Li, Xiaowei
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (06) : 1781 - 1793
  • [6] Energy-Efficient Deep In-memory Architecture for NAND Flash Memories
    Gonugondla, Sujan K.
    Kang, Mingu
    Kim, Yongjune
    Helm, Mark
    Eilert, Sean
    Shanbhag, Naresh
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [7] Memristor Overwrite Logic (MOL) for Energy-Efficient In-Memory DNN
    Ali, Khaled Alhaj
    Rizk, Mostafa
    Baghdadi, Amer
    Diguet, Jean-Philippe
    Jomaah, Jalal
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [8] A FAST AND ENERGY-EFFICIENT NANOELECTROMECHANICAL NON-VOLATILE MEMORY FOR IN-MEMORY COMPUTING
    Lee, Yong-Bok
    Gang, Min-Ho
    Choi, Pan-Kyu
    Kim, Su-Hyun
    Kim, Tae-Soo
    Lee, So-Young
    Yoon, Jun-Bo
    [J]. 2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2023, : 5 - 8
  • [9] PIMCA: A Programmable In-Memory Computing Accelerator for Energy-Efficient DNN Inference
    Zhang, Bo
    Yin, Shihui
    Kim, Minkyu
    Saikia, Jyotishman
    Kwon, Soonwan
    Myung, Sungmeen
    Kim, Hyunsoo
    Kim, Sang Joon
    Seo, Jae-Sun
    Seok, Mingoo
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (05) : 1436 - 1449
  • [10] Can in-memory/analog accelerators be a silver bullet for energy-efficient inference?
    Deguchi, J.
    Miyashita, D.
    Maki, A.
    Sasaki, S.
    Nakata, K.
    Tachibana, F.
    [J]. 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,