Memristor Overwrite Logic (MOL) for Energy-Efficient In-Memory DNN

被引:0
|
作者
Ali, Khaled Alhaj [1 ,4 ]
Rizk, Mostafa [1 ,3 ,4 ]
Baghdadi, Amer [1 ]
Diguet, Jean-Philippe [2 ]
Jomaah, Jalal [4 ]
机构
[1] Inst Mines Telecom, IMT Atlantique, Lab STICC CNRS UMR 6285, Brest, France
[2] Univ Bretagne Sud, Lab STICC CNRS UMR 6285, Lorient, France
[3] Int Univ Beirut, Beirut, Lebanon
[4] Lebanese Univ, Fac Sci, Phys Dept, Beirut, Lebanon
关键词
In-memory computing; Memristor; Deep neural network (DNN); Memristor Overwrite Logic (MOL); DESIGN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing is a promising solution to address the memory wall challenges in future processing systems. Substantial improvement in performance and energy efficiency is expected, in particular for data intensive applications. A typical use case is neural network applications, where large amount of data should be processed and moved between memory and processing cores. Although several recent works tried to accelerate processing through dedicated parallel hardware designs, data movement cost is still a critical technical challenge. In this context, we propose a novel programmable architecture design for in-memory deep neural networks (DNN) computation. Based on a new logic design style, namely Memristor Overwrite Logic (MOL), specialized computational memory is designed. The original architecture of the proposed computational memory allows to execute multiply-accumulate operations between stored words using MOL. Outstanding features are demonstrated with respect to other recent logic design styles based on emerging non-volatile memory technologies.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Memristive Computational Memory Using Memristor Overwrite Logic (MOL)
    Ali, Khaled Alhaj
    Rizk, Mostafa
    Baghdadi, Amer
    Diguet, Jean-Philippe
    Jomaah, Jalal
    Onizawa, Naoya
    Hanyu, Takahiro
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (11) : 2370 - 2382
  • [2] PIMCA: A Programmable In-Memory Computing Accelerator for Energy-Efficient DNN Inference
    Zhang, Bo
    Yin, Shihui
    Kim, Minkyu
    Saikia, Jyotishman
    Kwon, Soonwan
    Myung, Sungmeen
    Kim, Hyunsoo
    Kim, Sang Joon
    Seo, Jae-Sun
    Seok, Mingoo
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (05) : 1436 - 1449
  • [3] Crossbar Memory Architecture Performing Memristor Overwrite Logic
    Ali, Khaled Alhaj
    Rizk, Mostafa
    Baghdadi, Amer
    Diguet, Jean-Philippe
    Jomaah, Jalal
    [J]. 2019 26TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2019, : 723 - 726
  • [4] Energy-Efficient In-Memory Database Computing
    Lehner, Wolfgang
    [J]. DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 470 - 474
  • [5] Energy-efficient In-Memory Address Calculation
    Yousefzadeh, Amirreza
    Stuijt, Jan
    Hijdra, Martijn
    Liu, Hsiao-Hsuan
    Gebregiorgis, Anteneh
    Singh, Abhairaj
    Hamdioui, Said
    Catthoor, Francky
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2022, 19 (04)
  • [6] Energy-Efficient In-Memory Paging for Smartphones
    Zhong, Kan
    Liu, Duo
    Liang, Liang
    Zhu, Xiao
    Long, Linbo
    Wang, Yi
    Sha, Edwin Hsing-Mean
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (10) : 1577 - 1590
  • [7] Memristor-Based Efficient In-Memory Logic for Cryptologic and Arithmetic Applications
    Xu, Liying
    Yuan, Rui
    Zhu, Zhenhua
    Liu, Keqin
    Jing, Zhaokun
    Cai, Yimao
    Wang, Yu
    Yang, Yuchao
    Huang, Ru
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (07):
  • [8] In-Memory Computing: Towards Energy-Efficient Artificial Intelligence
    Le Gallo, Manuel
    Sebastian, Abu
    Eleftheriou, Evangelos
    [J]. ERCIM NEWS, 2018, (115): : 44 - 45
  • [9] An Energy-Efficient In-Memory Accelerator for Graph Construction and Updating
    Chen, Mingkai
    Liu, Cheng
    Liang, Shengwen
    He, Lei
    Wang, Ying
    Zhang, Lei
    Li, Huawei
    Li, Xiaowei
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (06) : 1781 - 1793
  • [10] Reconfigurable logic in nanosecond Cu/GeTe/TiN filamentary memristors for energy-efficient in-memory computing
    Jin, Miao-Miao
    Cheng, Long
    Li, Yi
    Hu, Si-Yu
    Lu, Ke
    Chen, Jia
    Duan, Nian
    Wang, Zhuo-Rui
    Zhou, Ya-Xiong
    Chang, Ting-Chang
    Miao, Xiang-Shui
    [J]. NANOTECHNOLOGY, 2018, 29 (38)