INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE m-CONVEX

被引:0
|
作者
Set, Erhan [1 ]
Ozdemir, M. Emin [1 ]
Sarikaya, Mehmet Zeki [2 ]
机构
[1] Ataturk Univ, Dept Math, KK Educ Fac, TR-25240 Erzurum, Turkey
[2] Duzcee Univ, Fac Sci, Dept Math, Duzce, Turkey
关键词
convex function; Hermite-Hadamard inequality; m-convex function; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we establish several inequalities of Hermite-Hadamard type for functions whose derivatives absolute values are m-convex.
引用
收藏
页码:861 / +
页数:2
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions
    Ozcan, Serap
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [2] On Some Inequalities of Hermite-Hadamard Type for M-Convex Functions
    Eftekhari, Noha
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 (02): : 221 - 238
  • [3] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE FIRST DERIVATIVES ABSOLUTE VALUES ARE s-CONVEX
    Chen, Feixiang
    Feng, Yuming
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 213 - 222
  • [4] New inequalities of hermite-hadamard type for functions whose second derivatives absolute values are exponential trigonometric convex
    Demir, Senol
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (03): : 451 - 456
  • [5] New inequalities of Hermite-Hadamard type for functions whose first derivatives absolute values are s-convex
    [J]. Chen, Feixiang, 1600, Forum-Editrice Universitaria Udinese SRL (32):
  • [6] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (04): : 353 - 359
  • [7] Hermite-Hadamard Type Inequalities for Functions Whose Derivatives are Operator Convex
    Ghazanfari, A. G.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (08) : 1695 - 1703
  • [8] Some inequalities of Hermite-Hadamard type for functions whose second derivatives are (α, m)-convex
    Shuang, Ye
    Qi, Feng
    Wang, Yan
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 139 - 148
  • [9] Some Inequalities of Hermite-Hadamard Type for Functions Whose Third Derivatives Are (α, m)-Convex
    Shuang, Ye
    Wang, Yan
    Qi, Feng
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (02) : 272 - 279
  • [10] Hermite-Hadamard Inequalities for Harmonic s,m-Convex Functions
    Xu, Jian Zhong
    Raza, Umar
    Javed, Muhammad Waqas
    Hussain, Zaryab
    Wang, Shaohui
    [J]. Mathematical Problems in Engineering, 2020, 2020