Equilibrium states and entropy theory for Nica-Pimsner algebras

被引:3
|
作者
Kakariadis, Evgenios T. A. [1 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Equilibrium states; Product systems; Nica-Pirnsner algebras; C-ASTERISK-ALGEBRAS; KMS STATES; PRODUCT SYSTEMS; TOPOLOGICAL-ENTROPY;
D O I
10.1016/j.aim.2019.106940
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the equilibrium simplex of Nica-Pimsner algebras arising from product systems of finite rank on the free abelian semigroup. First we show that every equilibrium state has a convex decomposition into parts parametrized by ideals on the unit hypercube. Secondly we associate every gauge-invariant part to a sub-simplex of tracial states of the diagonal algebra. We show how this parametrization lifts to the full equilibrium simplices of non-infinite type. The finite rank entails an entropy theory for identifying the two critical inverse temperatures: (a) the least upper bound for existence of non finite-type equilibrium states, and (b) the least positive inverse temperature below which there are no equilibrium states at all. We show that the first one can be at most the strong entropy of the product system whereas the second is the infirnum of the tracial entropies (modulo negative values). Thus phase transitions can happen only in-between these two critical points and possibly at zero temperature. Crown Copyright (C) 2019 Published by Elsevier Inc. All rights reserved.
引用
收藏
页数:59
相关论文
共 50 条
  • [21] ON ENTROPY FUNCTIONALS OF STATES OF OPERATOR-ALGEBRAS
    PETZ, D
    ACTA MATHEMATICA HUNGARICA, 1994, 64 (04) : 333 - 340
  • [22] CHARACTERIZATION OF THE RELATIVE ENTROPY OF STATES OF MATRIX ALGEBRAS
    PETZ, D
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) : 449 - 455
  • [23] THE DEFINITION OF ENTROPY IN NON-EQUILIBRIUM STATES
    VANKAMPEN, NG
    PHYSICA, 1959, 25 (12): : 1294 - 1302
  • [24] ON DEFINITION OF ENTROPY FOR NON-EQUILIBRIUM STATES
    HOFELICH, F
    ZEITSCHRIFT FUR PHYSIK, 1969, 226 (05): : 395 - &
  • [25] The entropy concept for non-equilibrium states
    Lieb, Elliott H.
    Yngvason, Jakob
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158):
  • [26] Relative Entropy of Coherent States on General CCR Algebras
    Henning Bostelmann
    Daniela Cadamuro
    Simone Del Vecchio
    Communications in Mathematical Physics, 2022, 389 : 661 - 691
  • [28] Relative Entropy of Coherent States on General CCR Algebras
    Bostelmann, Henning
    Cadamuro, Daniela
    Del Vecchio, Simone
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (01) : 661 - 691
  • [29] Equilibrium States on Right LCM Semigroup C*-Algebras
    Afsar, Zahra
    Brownlowe, Nathan
    Larsen, Nadia S.
    Stammeier, Nicolai
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (06) : 1642 - 1698
  • [30] C*-ALGEBRAS OF RIGHT LCM MONOIDS AND THEIR EQUILIBRIUM STATES
    Brownlowe, Nathan
    Larsen, Nadia S.
    Ramagge, Jacqui
    Stammeier, Nicolai
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (07) : 5235 - 5273