Reversible polygonalization of a 3D planar discrete curve: Application on discrete surfaces

被引:0
|
作者
Sivignon, I
Dupont, F
Chassery, JM
机构
[1] Lab LIS, F-38402 St Martin Dheres, France
[2] Univ Lyon 1, Lab LIRIS, F-69622 Villeurbanne, France
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Reversible polyhedral modelling of discrete objects is an important issue to handle those objects. We propose a new algorithm to compute a polygonal face from a discrete planar face (a set of voxels belonging to a discrete plane). This transformation is reversible, i.e. the digitization of this polygon is exactly the discrete face. We show how a set of polygons modelling exactly a discrete surface can be computed thanks to this algorithm.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [21] Euclidean nets: An automatic and reversible geometric smoothing of discrete 3D object boundaries
    Braquelaire, AJP
    Pousset, A
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2000, 1953 : 198 - 209
  • [22] A reversible and statistical method for discrete surfaces smoothing
    Kerautret, B
    Braquelaire, A
    COMPUTERS & GRAPHICS-UK, 2006, 30 (01): : 54 - 61
  • [23] Reversible Harmonic Maps between Discrete Surfaces
    Ezuz, Danielle
    Solomon, Justin
    Ben-Chen, Mirela
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (02):
  • [24] Discrete tunable laser for 3D imaging
    Havermeyer, Frank
    Ho, Lawrence
    2012 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2012, : 11 - 12
  • [25] 3D Integrated Power - A Discrete Perspective
    Kearney, Ian
    Brink, Stephen
    ISTFA 2015: CONFERENCE PROCEEDINGS FROM THE 41ST INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, 2015, : 141 - 146
  • [26] Hinge Angles for 3D Discrete Rotations
    Thibault, Yohan
    Sugimoto, Akihiro
    Kenmochi, Yukiko
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2009, 5852 : 122 - +
  • [27] 3D imaging of nanomaterials by discrete tomography
    Batenburg, K. J.
    Bals, S.
    Sijbers, J.
    Kuebel, C.
    Midgley, P. A.
    Hernandez, J. C.
    Kaiser, U.
    Encina, E. R.
    Coronado, E. A.
    Van Tendeloo, G.
    ULTRAMICROSCOPY, 2009, 109 (06) : 730 - 740
  • [28] A 3D discrete memristive chaotic map and its application in image encryption
    Shen, Junwei
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 402 - 412
  • [29] A tool for decomposing 3D discrete objects
    Svensson, S
    di Baja, GS
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 850 - 855
  • [30] A New 3D Discrete Hyperchaotic System and Its Application in Secure Transmission
    Li, Wangshu
    Yan, Wenhao
    Zhang, Ruoxun
    Wang, Chuanfu
    Ding, Qun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (14):