Reversible polygonalization of a 3D planar discrete curve: Application on discrete surfaces

被引:0
|
作者
Sivignon, I
Dupont, F
Chassery, JM
机构
[1] Lab LIS, F-38402 St Martin Dheres, France
[2] Univ Lyon 1, Lab LIRIS, F-69622 Villeurbanne, France
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Reversible polyhedral modelling of discrete objects is an important issue to handle those objects. We propose a new algorithm to compute a polygonal face from a discrete planar face (a set of voxels belonging to a discrete plane). This transformation is reversible, i.e. the digitization of this polygon is exactly the discrete face. We show how a set of polygons modelling exactly a discrete surface can be computed thanks to this algorithm.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [1] Linear representation of discrete surfaces in 3D
    Arcelli, Carlo
    di Baja, Gabriella Sanniti
    Serino, Luca
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2036 - 2039
  • [2] Invertible polygonalization of 3D planar digital curves and application to volume data reconstruction
    Dexet, Martine
    Coeurjolly, David
    Andres, Eric
    ADVANCES IN VISUAL COMPUTING, PT 2, 2006, 4292 : 514 - 523
  • [3] Critical bifurcation surfaces of 3D discrete dynamics
    Sonis, M
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (04) : 333 - 343
  • [4] Normal computation for discrete surfaces in 3D space
    Thurmer, G
    Wuthrich, CA
    COMPUTER GRAPHICS FORUM, 1997, 16 (03) : C15 - C26
  • [5] Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh
    Poltaretskyi, Sergii
    Chaoui, Jean
    Hamitouche-Djabou, Chafiaa
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2014, 2014, 8668 : 410 - 421
  • [6] Discrete curve evolution on arbitrary triangulated 3D mesh
    Poltaretskyi, Sergii
    Chaoui, Jean
    Hamitouche-Djabou, Chafiaa
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8668 : 410 - 421
  • [7] From 3D discrete surface skeletons to curve skeletons
    Arcelli, Carlo
    di Baja, Gabriella Sanniti
    Serino, Luca
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 507 - 516
  • [8] 2D and 3D visibility in discrete geometry: an application to discrete geodesic paths
    Coeurjolly, D
    Miguet, S
    Tougne, L
    PATTERN RECOGNITION LETTERS, 2004, 25 (05) : 561 - 570
  • [9] A definition of surfaces of Z(3) - A new 3D discrete Jordan theorem
    Malgouyres, R
    THEORETICAL COMPUTER SCIENCE, 1997, 186 (1-2) : 1 - 41
  • [10] DEFINITION AND INTERPOLATION OF DISCRETE METRIC FOR MESH GENERATION ON 3D SURFACES
    Glut, Barbara
    Jurczyk, Tomasz
    COMPUTER SCIENCE-AGH, 2005, 7 : 89 - 103