Thermal Battery for Electric Vehicles: High-Temperature Heating System for Solid Media Based Thermal Energy Storages

被引:6
|
作者
Dreissigacker, Volker [1 ]
机构
[1] German Aerosp Ctr, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 21期
关键词
solid media thermal energy storage system; high systemic storage densities; high temperature heating system; heat supply for electric vehicles;
D O I
10.3390/app112110500
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal energy storage systems open up high potentials for improvements in efficiency and flexibility for power plant and industrial applications. Transferring such technologies as basis for thermal management concepts in battery-electric vehicles allow alternative ways for heating the interior and avoid range limitations during cold seasons. The idea of such concepts is to generate heat electrically (power-to-heat) parallel of charging the battery, store it efficiently and discharge heat at a defined temperature level. The successful application of such concepts requires two central prerequisites: higher systemic storage densities compared to today's battery-powered PTC heaters as well as high charging and discharging powers. A promising approach for both requirements is based on solids as thermal energy storage. These allow during discharging an efficient heat transfer to the gaseous heat transfer medium (air) due to a wide range of geometric configurations with high specific surfaces and during charging high storage densities due to use of ceramic materials suitable for high operating temperatures. However, for such concepts suitable heating systems with small dimensions are needed, allowing an efficient and homogeneous heat transfer to the solid with high charging powers and high heating temperatures. An appropriate technology for this purpose is based on resistance heating wires integrated inside the channel shaped solids. These promise high storage densities due to operating wire temperature of up to 1300 & DEG;C and an efficient heat transport via radiation. Such electrically heated storage systems have been known for a long time for stationary applications, e.g., domestic storage heaters, but are new for mobile applications. For evaluation such concepts with regard to systemic storage and power density as well as to identify preferred configurations extensive investigations are necessary. For this purpose, transient models for the relevant heat transport mechanisms and the whole storage system were created. In order to allow time-efficient simulations studies for such an electrical heated storage system, a novel correlation for the effective radiation coefficient based on the Fourier Number was derived. This coefficient includes radiation effects and thermal conduction resistances and enables through its dimensionless parameterization the investigation of the charging process for a wide range of geometrical configurations. Based on application-typical specifications and the derived Fourier based correlation, extensive variation studies regarding the storage system were performed and evaluated with respect to systemic storage densities, heating wire surface loads and dimensions. For a favored design option selected here, maximum systemic storage densities of 201 Wh/kg at maximum heating wire surface loads of 4.6 W/cm(2) are achieved showing significant benefits compared to today's battery powered PTC heaters. Additionally, for proofing and confirming the storage concept, a test rig was erected focusing experimental investigations on the charging process. For a first experimental setup-up including all relevant components, mean temperature-related deviations between the simulative and the experimental results of 4.1% were detected and storage temperatures of up to 870 & DEG;C were reached. The systematically performed results confirm the feasibility, high efficiency, thermodynamic synergies with geometric requirements during thermal discharging and the potential of the technology to reach higher systemic storage densities compared to current solutions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] THERMOELECTRIC HEATING AND COOLING SYSTEM WITH INTEGRATED THERMAL ENERGY STORAGE (THERMAL BATTERY) FOR ELECTRIC VEHICLES
    Hacker, Annika
    Gorthala, Ravi
    Carnasciali, Maria-Isabel
    [J]. PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2018, 2018,
  • [2] Solid Media Thermal Energy Storage System for Heating Electric Vehicles: Advanced Concept for Highest Thermal Storage Densities
    Dreissigacker, Volker
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 17
  • [3] High temperature solid media thermal energy storage system with high effective storage densities for flexible heat supply in electric vehicles
    Dreissigacker, Volker
    Belik, Sergej
    [J]. APPLIED THERMAL ENGINEERING, 2019, 149 : 173 - 179
  • [4] Modeling of the Thermal Energy Management System for Battery Electric Vehicles
    Lokur, Prashant
    Nicklasson, Kristian
    Verde, Leo
    Larsson, Mikael
    Murgovski, Nikolce
    [J]. 2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [5] High-Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants
    Laing, Doerte
    Bahl, Carsten
    Bauer, Thomas
    Fiss, Michael
    Breidenbach, Nils
    Hempel, Matthias
    [J]. PROCEEDINGS OF THE IEEE, 2012, 100 (02) : 516 - 524
  • [6] Induction Heater Based Battery Thermal Management System for Electric Vehicles
    Raza, Waseem
    Ko, Gwang Soo
    Park, Youn Cheol
    [J]. ENERGIES, 2020, 13 (21)
  • [7] Graphene based thermal management system for battery cooling in electric vehicles
    Liu, Ya
    Thiringer, Torbjorn
    Wang, Nan
    Fu, Yifeng
    Lu, Hongbin
    Liu, Johan
    [J]. 2020 IEEE 8TH ELECTRONICS SYSTEM-INTEGRATION TECHNOLOGY CONFERENCE (ESTC), 2020,
  • [8] Buildings and a district heating network as thermal energy storages in the district heating system
    Turski, Michal
    Sekret, Robert
    [J]. ENERGY AND BUILDINGS, 2018, 179 : 49 - 56
  • [9] Optimization of a Thermal Management System for Battery Electric Vehicles
    Scholl, Manuel
    Minnerup, Katharina
    Reiter, Christoph
    Bernhardt, Benno
    Weisbrodt, Elena
    Newiger, Sebastian
    [J]. 2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [10] Review on battery thermal management system for electric vehicles
    Kim, Jaewan
    Oh, Jinwoo
    Lee, Hoseong
    [J]. APPLIED THERMAL ENGINEERING, 2019, 149 : 192 - 212