Automated classification of atherosclerotic plaque from magnetic resonance images using predictive models

被引:6
|
作者
Anderson, Russell W.
Stomberg, Christopher
Hahm, Charles W.
Mani, Venkatesh
Samber, Daniel D.
Itskovich, Vitalii V.
Valera-Guallar, Laura
Fallon, John T.
Nedanov, Pavel B.
Huizenga, Joel
Fayad, Zahi A.
机构
[1] ISCHEM Corp, La Jolla, CA 92037 USA
[2] LLC, Del Mar, CA USA
[3] Marie Josee & Henry R Kravis Cardiovasc Hlth Ctr, Zena & Michael A Wiener Cardiovasc Inst, Mt Sinai Sch Med, Dept Radiol,Imaging Sci Lab, New York, NY USA
[4] CUNY Mt Sinai Sch Med, Dept Pathol, New York, NY 10029 USA
关键词
magnetic resonance imaging; MRI; coronary disease; atherosclerosis; vulnerable plaque;
D O I
10.1016/j.biosystems.2006.11.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The information contained within multicontrast magnetic resonance images (MRI) promises to improve tissue classification accuracy, once appropriately analyzed. Predictive models capture relationships empirically, from known outcomes thereby combining pattern classification with experience. In this study, we examine the applicability of predictive modeling for atherosclerotic plaque component classification of multicontrast ex vivo MR images using stained, histopathological sections as ground truth. Ten multicontrast images from seven human coronary artery specimens were obtained on a 9.4T imaging system using multicontrast-weighted fast spin-echo (T1-, proton density-, and T2-weighted) imaging with 39-mu m isotropic voxel size. Following initial data transformations, predictive modeling focused on automating the identification of specimen's plaque, lipid, and media. The outputs of these three models were used to calculate statistics such as total plaque burden and the ratio of hard plaque (fibrous tissue) to lipid. Both logistic regression and an artificial neural network model (Relevant Input Processor Network-RIPNet) were used for predictive modeling. When compared against segmentation resulting from cluster analysis, the RIPNet models performed between 25 and 30% better in absolute terms. This translates to a 50% higher true positive rate over given levels of false positives. This work indicates that it is feasible to build an automated system of plaque detection using MRI and data mining. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:456 / 466
页数:11
相关论文
共 50 条
  • [41] Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging
    Yuan, C
    Beach, KW
    Smith, LH
    Hatsukami, TS
    [J]. CIRCULATION, 1998, 98 (24) : 2666 - 2671
  • [42] Automated lung segmentation in magnetic resonance images
    Sensakovic, WF
    Armato, SG
    Starkey, A
    [J]. Medical Imaging 2005: Image Processing, Pt 1-3, 2005, 5747 : 1776 - 1781
  • [43] Quantitation of atherosclerotic plaque burden in the carotid arteries by magnetic resonance imaging
    Karmonik, C
    Eldridge, C
    Vick, W
    Insull, W
    Morrisett, J
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2001, 88 (2A): : 78E - 78E
  • [44] Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging
    Barkhausen, J
    Ebert, W
    Heyer, C
    Debatin, JF
    Weinmann, HJ
    [J]. CIRCULATION, 2003, 108 (05) : 605 - 609
  • [45] High-resolution magnetic resonance imaging of carotid atherosclerotic plaque
    Saam, T.
    Schoenberg, S. O.
    Hatsukami, T. S.
    Reiser, M.
    Yuan, C.
    Nikolaou, K.
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2008, 180 (02): : 100 - 111
  • [46] Automated parcellation of the brain surface generated from magnetic resonance images
    Li, Wen
    Andreasen, Nancy C.
    Nopoulos, Peg
    Magnotta, Vincent A.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [47] In-vivo differentiation of atherosclerotic plaque lesions by Magnetic Resonance Imaging
    Frank, H
    Loewe, G
    Oberhuber, G
    Hölzenbein, T
    Maurer, G
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1998, 31 (02) : 381A - 381A
  • [48] Immunohistochemical evaluation of atherosclerotic plaque using intravascular ultrasound images
    Okimoto, T
    Imazu, M
    Hayashi, Y
    Fujiwara, H
    Ueda, H
    Sumii, K
    Toyofuku, M
    Kajiwara, K
    Shimizu, Y
    Shokawa, T
    [J]. CIRCULATION, 2000, 102 (18) : 636 - 636
  • [49] Classification of Magnetic Resonance Images using Bag of Features for Detecting Dementia
    Bansal, Deepika
    Khanna, Kavita
    Chhikara, Rita
    Dua, Rakesh Kumar
    Malhotra, Rajeev
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 131 - 137
  • [50] Classification of Alzheimer's disease stages from magnetic resonance images using deep learning
    Mora-Rubio, Alejandro
    Bravo-Ortiz, Mario Alejandro
    Arredondo, Sebastian Quinones
    Torres, Jose Manuel Saborit
    Ruz, Gonzalo A.
    Tabares-Soto, Reinel
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9