Fejer-Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals

被引:4
|
作者
Farid, Ghulam [1 ]
Yussouf, Muhammad [2 ]
Nonlaopon, Kamsing [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[2] Govt Grad Talim Ul Islam Coll, Dept Math, Chenab Nagar 35460, Pakistan
[3] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
关键词
a; h-m)-p-convex function; Fejer - Hadamard inequality; Mittag-Leffler function; extended generalized fractional integrals; MITTAG-LEFFLER FUNCTION; HERMITE-HADAMARD;
D O I
10.3390/fractalfract5040253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integral operators of a fractional order containing the Mittag-Leffler function are important generalizations of classical Riemann-Liouville integrals. The inequalities that are extensively studied for fractional integral operators are the Hadamard type inequalities. The aim of this paper is to find new versions of the Fejer-Hadamard (weighted version of the Hadamard inequality) type inequalities for (alpha, h-m)-p-convex functions via extended generalized fractional integrals containing Mittag-Leffler functions. These inequalities hold simultaneously for different types of well-known convexities as well as for different kinds of fractional integrals. Hence, the presented results provide more generalized forms of the Hadamard type inequalities as compared to the inequalities that already exist in the literature.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hadamard and Fejer-Hadamard Inequalities for (α, h - m) - p-Convex Functions via Riemann-Liouville Fractional Integrals
    Jia, Wenyan
    Yussouf, Muhammad
    Farid, Ghulam
    Khan, Khuram Ali
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [2] (h-m)-convex functions and associated fractional Hadamard and Fejer-Hadamard inequalities via an extended generalized Mittag-Leffler function
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Mehmood, Sajid
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [3] Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via Fractional Integrals
    Kunt, Mehmet
    Iscan, Imdat
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2079 - 2089
  • [4] Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Tariq, Bushra
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [5] Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions
    Yang, Xiuzhi
    Farid, G.
    Nazeer, Waqas
    Yussouf, Muhammad
    Chu, Yu-Ming
    Dong, Chunfa
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6325 - 6340
  • [6] Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals
    Naila Mehreen
    Matloob Anwar
    [J]. Journal of Inequalities and Applications, 2020
  • [7] Generalized Fractional Hadamard and Fejer-Hadamard Inequalities for Generalized Harmonically Convex Functions
    Jung, Chahn Yong
    Yussouf, Muhammad
    Chu, Yu-Ming
    Farid, Ghulam
    Kang, Shin Min
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [8] Hadamard and Fejer type inequalities for p-convex functions via Caputo fractional derivatives
    Mehreen, Naila
    Anwar, Matloob
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 253 - 266
  • [9] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via conformable fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [10] HADAMARD AND FEJER-HADAMARD TYPE INEQUALITIES FOR CONVEX AND RELATIVE CONVEX FUNCTIONS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION
    Farid, Ghulam
    Mishra, Vishnu Narayan
    Mehmood, Sajid
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05): : 892 - 903