Sufficient Conditions for the Global Rigidity of Periodic Graphs
被引:0
|
作者:
Kaszanitzky, Viktoria E.
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
Eotvos Lorand Res Network ELKH, MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryBudapest Univ Technol & Econ, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
Kaszanitzky, Viktoria E.
[1
,2
]
Kiraly, Csaba
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Res Network ELKH, MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryBudapest Univ Technol & Econ, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
Kiraly, Csaba
[2
,3
]
Schulze, Bernd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, EnglandBudapest Univ Technol & Econ, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
Schulze, Bernd
[4
]
机构:
[1] Budapest Univ Technol & Econ, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
[2] Eotvos Lorand Res Network ELKH, MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[4] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
Tanigawa (2016) showed that vertex-redundant rigidity of a graph implies its global rigidity in arbitrary dimension. We extend this result to periodic frameworks under fixed lattice representations. That is, we show that if a generic periodic framework is vertex-redundantly rigid, in the sense that the deletion of a single vertex orbit under the periodicity results in a periodically rigid framework, then it is also periodically globally rigid. Our proof is similar to the one of Tanigawa, but there are some added difficulties. First, it is not known whether periodic global rigidity is a generic property in dimension d > 2. We work around this issue by using slight modifications of recent results of Kaszanitzky et al. (2021). Secondly, while the rigidity of finite frameworks in R-d on at most d vertices obviously implies their global rigidity, it is non-trivial to prove a similar result for periodic frameworks. This is accomplished by extending a result of Bezdek and Connelly (2002) on the existence of a continuous motion between two equivalent d-dimensional realisations of a single graph in R-2d to periodic frameworks. As an application of our result, we give a necessary and sufficient condition for the global rigidity of generic periodic body-bar frameworks in arbitrary dimension. This provides a periodic counterpart to a result of Connelly et al. (2013) regarding the global rigidity of generic finite body-bar frameworks.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Comp Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Comp Sci, IL-69978 Tel Aviv, Israel
Shklarski, Gil
Toledo, Sivan
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Comp Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Comp Sci, IL-69978 Tel Aviv, Israel
机构:
Chuo Univ, Dept Informat & Syst Engn, Tokyo, Japan
Japan Sci & Technol Agcy JST, CREST, Tokyo, JapanTokyo Inst Technol, Dept Architecture, Tokyo, Japan
Higashikawa, Yuya
Katoh, Naoki
论文数: 0引用数: 0
h-index: 0
机构:
Kwansei Gakuin Univ, Dept Informat, Nishinomiya, Hyogo, Japan
Japan Sci & Technol Agcy JST, CREST, Tokyo, JapanTokyo Inst Technol, Dept Architecture, Tokyo, Japan