Framing the novel aspects of irreversibilty in MHD flow of Williamson nanomaterial with thermal radiation near stagnation point

被引:6
|
作者
Khan, M. Ijaz [1 ]
Qayyum, Sumaira [1 ]
Waqas, M. [2 ]
Hayat, T. [1 ,3 ]
Alsaedi, A. [3 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
[2] Natl Univ Technol, NUTECH Sch Appl Sci & Humanities, Islamabad 44000, Pakistan
[3] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
关键词
MHD Williamson nanofluid; Activation energy; Entropy generation; Viscous dissipation; Radiative heat flux; Ohmic heating; ENTROPY GENERATION MINIMIZATION; NON-NEWTONIAN FLUID; CHRISTOV HEAT-FLUX; ACTIVATION-ENERGY; VISCOUS DISSIPATION; MIXED CONVECTION; NUMERICAL-SIMULATION; CASSON FLUID; NANOFLUID; MODEL;
D O I
10.1007/s10973-019-08524-x
中图分类号
O414.1 [热力学];
学科分类号
摘要
Here, MHD stagnation point flow of non-Newtonian fluid over a stretchable surface is considered. Process of modeling is characterized for basic relations of non-Newtonian Williamson fluid. Nanofeatures for thermophoresis and random movement of liquid particles present. Applied magnetic field for small Reynolds number is considered. Induced magnetic field is not accounted. Entropy equation is studied in the presence of Ohmic heating, radiation and dissipation. The carried out analysis reduces the PDE systems into the ODE systems with nonlinearity. The obtained nonlinear ODE systems are solved utilizing modern way of solution technique known as the built-in-Shooting method. Furthermore, total entropy rate is calculated via second law of thermodynamics. Velocity, entropy rate, temperature, Nusselt number, mass concentration, skin friction and Sherwood number are discussed through different physical parameters. Key observations of the whole study are listed.
引用
收藏
页码:1291 / 1299
页数:9
相关论文
共 50 条
  • [1] Framing the novel aspects of irreversibilty in MHD flow of Williamson nanomaterial with thermal radiation near stagnation point
    M. Ijaz Khan
    Sumaira Qayyum
    M. Waqas
    T. Hayat
    A. Alsaedi
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 1291 - 1299
  • [2] Thermal Radiation Effect on MHD Stagnation Point flow of Williamson Fluid over a stretching Surface
    Hashim, Hasmawani
    Mohamed, Muhammad Khairul Anuar
    Ishak, Nazila
    Sarif, Norhafizah Md
    Salleh, Mohd Zuki
    2ND INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS, 2019, 1366
  • [3] Radiation effects on the MHD flow near the stagnation point of a stretching sheet
    Jat, R. N.
    Chaudhary, Santosh
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1151 - 1154
  • [4] Radiation effects on the MHD flow near the stagnation point of a stretching sheet
    R. N. Jat
    Santosh Chaudhary
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 1151 - 1154
  • [5] MHD Stagnation Point Flow of Williamson Nanofluid Over an Exponentially Inclined Stretching Surface with Thermal Radiation and Viscous Dissipation
    Rajendar, Punnam
    Babu, L. Anand
    JOURNAL OF NANOFLUIDS, 2018, 7 (04) : 683 - 693
  • [6] Melting effect in MHD stagnation point flow of Jeffrey nanomaterial
    Hayat, T.
    Muhammad, Khursheed
    Alsaedi, A.
    PHYSICA SCRIPTA, 2019, 94 (11)
  • [7] Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited
    Pop, Ioan
    Ishak, Anuar
    Aman, Fazlina
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (05): : 953 - 956
  • [8] Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited
    Ioan Pop
    Anuar Ishak
    Fazlina Aman
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 953 - 956
  • [9] Effect of Thermal Radiation on MHD Stagnation Point Flow over a Shrinking Sheet
    Aladdin, Nur Adilah Liyana
    Bachok, Norfifah
    Nasir, Nor Ain Azeany Mohd
    2ND INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS, 2019, 1366
  • [10] MHD FLOW NEAR AN ASYMMETRIC PLANE STAGNATION POINT
    POP, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (11): : 580 - 581