FOREST MAPPING USING 3D DATA FROM SPOT-5 HRS AND Z/I DMC

被引:10
|
作者
Wallerman, Jorgen [1 ]
Fransson, Johan E. S. [1 ]
Bohlin, Jonas [1 ]
Reese, Heather [1 ]
Olsson, Hakan [1 ]
机构
[1] Swedish Univ Agr Sci, Dept Forest Resource Management, SE-90183 Umea, Sweden
关键词
Forest management; canopy height model; optical sensors; GENERATION; QUALITY; TREES;
D O I
10.1109/IGARSS.2010.5653818
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The nation-wide Airborne Laser Scanning (ALS) currently performed by the Swedish National Land Survey will provide a new and accurate Digital Elevation Model (DEM). These data will enable new and cost-efficient assessments of vegetation height using Canopy Height Models (CHMs) derived as the difference between a Digital Surface Model (DSM) and the DEM. In this context, the High Resolution Stereoscopic (HRS) sensor onboard SPOT-5 and the airborne Z/I Digital Mapping Camera (DMC) used for operational aerial photography by the Swedish National Land Survey are of main interest. Previous research has shown that reliable tree height data are a powerful source of information for forest management planning. This study investigated the possibilities to map forest variables using CHMs derived from either the SPOT-5 HRS or Z/I DMC sensor together with ALS DEM data, in combination with spectral data from the SPOT-5 High Resolution Geometric (HRG) sensor. The results when using the Z/I DMC CHM in combination with SPOT-5 HRG data showed Root Mean Square Errors for standwise prediction of mean tree height, stem diameter, and stem volume of 7.3%, 9.0%, and 19%, respectively. The SPOT-5 HRS CHM in combination with SPOT-5 HRG data improved the SPOT HRG based estimates from 13% to 10%, 15% to 13%, and 31% to 23%, for tree height, stem diameter, and stem volume, respectively. Adding CHM data to a SPOT-5 HRG based prediction model improved the mapping accuracy between 13% to 44%. In conclusion, the obtained accuracies may be sufficient for operational forest management planning.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [21] First Data Release of the COSMOS Lyα Mapping and Tomography Observations: 3D Lyα Forest Tomography at 2.05 < z < 2.55
    Lee, Khee-Gan
    Krolewski, Alex
    White, Martin
    Schlegel, David
    Nugent, Peter E.
    Hennawi, Joseph F.
    Muller, Thomas
    Pan, Richard
    Prochaska, J. Xavier
    Font-Ribera, Andreu
    Suzuki, Nao
    Glazebrook, Karl
    Kacprzak, Glenn G.
    Kartaltepe, Jeyhan S.
    Koekemoer, Anton M.
    Le Fevre, Olivier
    Lemaux, Brian C.
    Maier, Christian
    Nanayakkara, Themiya
    Rich, R. Michael
    Sanders, D. B.
    Salvato, Mara
    Tasca, Lidia
    Tran, Kim-Vy H.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 237 (02):
  • [22] Large-scale 3D mapping of the intergalactic medium using the Lyman α forest
    Ozbek, Melih
    Croft, Rupert A. C.
    Khandai, Nishikanta
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (04) : 3610 - 3623
  • [23] Technical Paper: Forest Data Collection by UAV Lidar-Based 3D Mapping: Segmentation of Individual Tree Information from 3D Point Clouds
    Suzuki, Taro
    Shiozawa, Shunichi
    Yamaba, Atsushi
    Amano, Yoshiharu
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2021, 15 (03) : 313 - 323
  • [24] 3D RECONSTRUCTION OF BUNDLE SUB-CONDUCTORS USING LIDAR DATA FROM FOREST TERRAINS
    Munir, Nosheen
    Awrangjeb, Mohammad
    Stantic, Bela
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7230 - 7233
  • [25] Mapping Riparian Vegetation Functions Using 3D Bispectral LiDAR Data
    Laslier, Marianne
    Hubert-Moy, Laurence
    Dufour, Simon
    WATER, 2019, 11 (03)
  • [26] SegMap: 3D Segment Mapping using Data-Driven Descriptors
    Dube, Renaud
    Cramariuc, Andrei
    Dugas, Daniel
    Nieto, Juan
    Siegwart, Roland
    Cadena, Cesar
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [27] Topographic Mapping Using IFSAR Data in a 3D Desktop GIS Environment
    Jenkins, L. G.
    Lund, Larry
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2010, 76 (07): : 750 - 753
  • [28] Assessing Forest Vitality and Forest Structure Using 3D Data: A Case Study From the Hainich National Park, Germany
    Heidenreich, Marius G.
    Seidel, Dominik
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2022, 5
  • [29] 3D correlations in the Lyman-α forest from early DESI data
    Gordon, C.
    Cuceu, A.
    Chaves-Montero, J.
    Font-Ribera, A.
    Gonzalez-Morales, A. X.
    Aguilar, J.
    Ahlen, S.
    Armengaud, E.
    Bailey, S.
    Bault, A.
    Brodzeller, A.
    Brooks, D.
    Claybaugh, T.
    Cruz, R. de la
    Dawson, K.
    Doel, P.
    Forero-Romero, J. E.
    Gontcho, S. Gontcho A.
    Guy, J.
    Herrera-Alcantar, H. K.
    Irsic, V.
    Karacayli, N. G.
    Kirkby, D.
    Landriau, M.
    Le Guillou, L.
    Levi, M. E.
    Macorra, A. de la
    Manera, M.
    Martini, P.
    Meisner, A.
    Miquel, R.
    Montero-Camacho, P.
    Munoz-Gutierrez, A.
    Napolitano, L.
    Nie, J.
    Niz, G.
    Palanque-Delabrouille, N.
    Percival, W. J.
    Pieri, M.
    Poppett, C.
    Prada, F.
    Perez-Rafols, I.
    Ramirez-Perez, C.
    Ravoux, C.
    Rezaie, M.
    Ross, A. J.
    Rossi, G.
    Sanchez, E.
    Schlegel, D.
    Schubnell, M.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (11):
  • [30] 3D Mineral Prospectivity Mapping from 3D Geological Models Using Return-Risk Analysis and Machine Learning on Imbalance Data
    Peng, Qingming
    Wang, Zhongzheng
    Wang, Gongwen
    Zhang, Wengao
    Chen, Zhengle
    Liu, Xiaoning
    MINERALS, 2023, 13 (11)